File size: 23,766 Bytes
448ebbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d5f935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
448ebbd
 
 
 
3d5f935
 
448ebbd
3d5f935
448ebbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d5f935
448ebbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d5f935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
"""Tensor-utils
"""
import io
import math
from contextlib import redirect_stdout
from pathlib import Path

# from copy import copy
from threading import Thread

import numpy as np
import torch
import torch.nn as nn
from skimage import io as skio
from torch import autograd
from torch.autograd import Variable
from torch.nn import init

from climategan.utils import all_texts_to_array


def transforms_string(ts):
    return " -> ".join([t.__class__.__name__ for t in ts.transforms])


def init_weights(net, init_type="normal", init_gain=0.02, verbose=0, caller=""):
    """Initialize network weights.
    Parameters:
        net (network)     -- network to be initialized
        init_type (str)   -- the name of an initialization method:
                             normal | xavier | kaiming | orthogonal
        init_gain (float) -- scaling factor for normal, xavier and orthogonal.

    We use 'normal' in the original pix2pix and CycleGAN paper.
    But xavier and kaiming might work better for some applications.
    Feel free to try yourself.
    """

    if not init_type:
        print(
            "init_weights({}): init_type is {}, defaulting to normal".format(
                caller + " " + net.__class__.__name__, init_type
            )
        )
        init_type = "normal"
    if not init_gain:
        print(
            "init_weights({}): init_gain is {}, defaulting to normal".format(
                caller + " " + net.__class__.__name__, init_type
            )
        )
        init_gain = 0.02

    def init_func(m):
        classname = m.__class__.__name__
        if classname.find("BatchNorm2d") != -1:
            if hasattr(m, "weight") and m.weight is not None:
                init.normal_(m.weight.data, 1.0, init_gain)
            if hasattr(m, "bias") and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif hasattr(m, "weight") and (
            classname.find("Conv") != -1 or classname.find("Linear") != -1
        ):
            if init_type == "normal":
                init.normal_(m.weight.data, 0.0, init_gain)
            elif init_type == "xavier":
                init.xavier_normal_(m.weight.data, gain=init_gain)
            elif init_type == "xavier_uniform":
                init.xavier_uniform_(m.weight.data, gain=1.0)
            elif init_type == "kaiming":
                init.kaiming_normal_(m.weight.data, a=0, mode="fan_in")
            elif init_type == "orthogonal":
                init.orthogonal_(m.weight.data, gain=init_gain)
            elif init_type == "none":  # uses pytorch's default init method
                m.reset_parameters()
            else:
                raise NotImplementedError(
                    "initialization method [%s] is not implemented" % init_type
                )
            if hasattr(m, "bias") and m.bias is not None:
                init.constant_(m.bias.data, 0.0)

    if verbose > 0:
        print("initialize %s with %s" % (net.__class__.__name__, init_type))
    net.apply(init_func)


def domains_to_class_tensor(domains, one_hot=False):
    """Converts a list of strings to a 1D Tensor representing the domains

    domains_to_class_tensor(["sf", "rn"])
    >>> torch.Tensor([2, 1])

    Args:
        domain (list(str)): each element of the list should be in {rf, rn, sf, sn}
        one_hot (bool, optional): whether or not to 1-h encode class labels.
            Defaults to False.
    Raises:
        ValueError: One of the domains listed is not in {rf, rn, sf, sn}

    Returns:
        torch.Tensor: 1D tensor mapping a domain to an int (not 1-hot) or 1-hot
            domain labels in a 2D tensor
    """

    mapping = {"r": 0, "s": 1}

    if not all(domain in mapping for domain in domains):
        raise ValueError(
            "Unknown domains {} should be in {}".format(domains, list(mapping.keys()))
        )

    target = torch.tensor([mapping[domain] for domain in domains])

    if one_hot:
        one_hot_target = torch.FloatTensor(len(target), 2)  # 2 domains
        one_hot_target.zero_()
        one_hot_target.scatter_(1, target.unsqueeze(1), 1)
        # https://discuss.pytorch.org/t/convert-int-into-one-hot-format/507
        target = one_hot_target
    return target


def fake_domains_to_class_tensor(domains, one_hot=False):
    """Converts a list of strings to a 1D Tensor representing the fake domains
    (real or sim only)

    fake_domains_to_class_tensor(["s", "r"], False)
    >>> torch.Tensor([0, 2])


    Args:
        domain (list(str)): each element of the list should be in {r, s}
        one_hot (bool, optional): whether or not to 1-h encode class labels.
            Defaults to False.
    Raises:
        ValueError: One of the domains listed is not in {rf, rn, sf, sn}

    Returns:
        torch.Tensor: 1D tensor mapping a domain to an int (not 1-hot) or
            a 2D tensor filled with 0.25 to fool the classifier (equiprobability
            for each domain).
    """
    if one_hot:
        target = torch.FloatTensor(len(domains), 2)
        target.fill_(0.5)

    else:
        mapping = {"r": 1, "s": 0}

        if not all(domain in mapping for domain in domains):
            raise ValueError(
                "Unknown domains {} should be in {}".format(
                    domains, list(mapping.keys())
                )
            )

        target = torch.tensor([mapping[domain] for domain in domains])
    return target


def show_tanh_tensor(tensor):
    import skimage

    if isinstance(tensor, torch.Tensor):
        image = tensor.permute(1, 2, 0).detach().numpy()
    else:
        image = tensor
        if image.shape[-1] != 3:
            image = image.transpose(1, 2, 0)

    if image.min() < 0 and image.min() > -1:
        image = image / 2 + 0.5
    elif image.min() < -1:
        raise ValueError("can't handle this data")

    skimage.io.imshow(image)


def normalize_tensor(t):
    """
    Brings any tensor to the [0; 1] range.

    Args:
        t (torch.Tensor): input to normalize

    Returns:
        torch.Tensor: t projected to [0; 1]
    """
    t = t - torch.min(t)
    t = t / torch.max(t)
    return t


def get_normalized_depth_t(tensor, domain, normalize=False, log=True):
    assert not (normalize and log)
    if domain == "r":
        # megadepth depth
        tensor = tensor.unsqueeze(0)
        tensor = tensor - torch.min(tensor)
        tensor = torch.true_divide(tensor, torch.max(tensor))

    elif domain == "s":
        # from 3-channel depth encoding from Unity simulator to 1-channel [0-1] values
        tensor = decode_unity_depth_t(tensor, log=log, normalize=normalize)

    elif domain == "kitti":
        tensor = tensor / 100
        if not log:
            tensor = 1 / tensor
            if normalize:
                tensor = tensor - tensor.min()
                tensor = tensor / tensor.max()
        else:
            tensor = torch.log(tensor)

        tensor = tensor.unsqueeze(0)

    return tensor


def decode_bucketed_depth(tensor, opts):
    # tensor is size 1 x C x H x W
    assert tensor.shape[0] == 1
    idx = torch.argmax(tensor.squeeze(0), dim=0)  # channels become dim 0 with squeeze
    linspace_args = (
        opts.gen.d.classify.linspace.min,
        opts.gen.d.classify.linspace.max,
        opts.gen.d.classify.linspace.buckets,
    )
    indexer = torch.linspace(*linspace_args)
    log_depth = indexer[idx.long()].to(torch.float32)  # H x W
    depth = torch.exp(log_depth)
    return depth.unsqueeze(0).unsqueeze(0).to(tensor.device)


def decode_unity_depth_t(unity_depth, log=True, normalize=False, numpy=False, far=1000):
    """Transforms the 3-channel encoded depth map from our Unity simulator
    to 1-channel depth map containing metric depth values.
    The depth is encoded in the following way:
    - The information from the simulator is (1 - LinearDepth (in [0,1])).
        far corresponds to the furthest distance to the camera included in the
        depth map.
        LinearDepth * far gives the real metric distance to the camera.
    - depth is first divided in 31 slices encoded in R channel with values ranging
        from 0 to 247
    - each slice is divided again in 31 slices, whose value is encoded in G channel
    - each of the G slices is divided into 256 slices, encoded in B channel

    In total, we have a discretization of depth into N = 31*31*256 - 1 possible values,
    covering a range of far/N meters.

    Note that, what we encode here is 1 - LinearDepth so that the furthest point is
    [0,0,0] (that is sky) and the closest point[255,255,255]

    The metric distance associated to a pixel whose depth is (R,G,B) is :
        d = (far/N) * [((255 - R)//8)*256*31 + ((255 - G)//8)*256 + (255 - B)]

    * torch.Tensor in [0, 1] as torch.float32 if numpy == False

    * else numpy.array in [0, 255] as np.uint8

    Args:
        unity_depth (torch.Tensor): one depth map obtained from our simulator
        numpy (bool, optional): Whether to return a float tensor or an int array.
         Defaults to False.
        far: far parameter of the camera in Unity simulator.

    Returns:
        [torch.Tensor or numpy.array]: decoded depth
    """
    R = unity_depth[:, :, 0]
    G = unity_depth[:, :, 1]
    B = unity_depth[:, :, 2]

    R = ((247 - R) / 8).type(torch.IntTensor)
    G = ((247 - G) / 8).type(torch.IntTensor)
    B = (255 - B).type(torch.IntTensor)
    depth = ((R * 256 * 31 + G * 256 + B).type(torch.FloatTensor)) / (256 * 31 * 31 - 1)
    depth = depth * far
    if not log:
        depth = 1 / depth
    depth = depth.unsqueeze(0)  # (depth * far).unsqueeze(0)

    if log:
        depth = torch.log(depth)
    if normalize:
        depth = depth - torch.min(depth)
        depth /= torch.max(depth)
    if numpy:
        depth = depth.data.cpu().numpy()
        return depth.astype(np.uint8).squeeze()
    return depth


def to_inv_depth(log_depth, numpy=False):
    """Convert log depth tensor to inverse depth image for display

    Args:
        depth (Tensor): log depth float tensor
    """
    depth = torch.exp(log_depth)
    # visualize prediction using inverse depth, so that we don't need sky
    # segmentation (if you want to use RGB map for visualization,
    # you have to run semantic segmentation to mask the sky first
    # since the depth of sky is random from CNN)
    inv_depth = 1 / depth
    inv_depth /= torch.max(inv_depth)
    if numpy:
        inv_depth = inv_depth.data.cpu().numpy()
    # you might also use percentile for better visualization

    return inv_depth


def shuffle_batch_tuple(mbt):
    """shuffle the order of domains in the batch

    Args:
        mbt (tuple): multi-batch tuple

    Returns:
        list: randomized list of domain-specific batches
    """
    assert isinstance(mbt, (tuple, list))
    assert len(mbt) > 0
    perm = np.random.permutation(len(mbt))
    return [mbt[i] for i in perm]


def slice_batch(batch, slice_size):
    assert slice_size > 0
    for k, v in batch.items():
        if isinstance(v, dict):
            for task, d in v.items():
                batch[k][task] = d[:slice_size]
        else:
            batch[k] = v[:slice_size]
    return batch


def save_tanh_tensor(image, path):
    """Save an image which can be numpy or tensor, 2 or 3 dims (no batch)
    to path.

    Args:
        image (np.array or torch.Tensor): image to save
        path (pathlib.Path or str): where to save the image
    """
    path = Path(path)
    if isinstance(image, torch.Tensor):
        image = image.detach().cpu().numpy()
        if image.shape[-1] != 3 and image.shape[0] == 3:
            image = np.transpose(image, (1, 2, 0))
    if image.min() < 0 and image.min() > -1:
        image = image / 2 + 0.5
    elif image.min() < -1:
        image -= image.min()
        image /= image.max()
        # print("Warning: scaling image data in save_tanh_tensor")

    skio.imsave(path, (image * 255).astype(np.uint8))


def save_batch(multi_domain_batch, root="./", step=0, num_threads=5):
    root = Path(root)
    root.mkdir(parents=True, exist_ok=True)
    images_to_save = {"paths": [], "images": []}
    for domain, batch in multi_domain_batch.items():
        y = batch["data"].get("y")
        x = batch["data"]["x"]
        if y is not None:
            paths = batch["paths"]["x"]
            imtensor = torch.cat([x, y], dim=-1)
            for i, im in enumerate(imtensor):
                imid = Path(paths[i]).stem[:10]
                images_to_save["paths"] += [
                    root / "im_{}_{}_{}.png".format(step, domain, imid)
                ]
                images_to_save["images"].append(im)
    if num_threads > 0:
        threaded_write(images_to_save["images"], images_to_save["paths"], num_threads)
    else:
        for im, path in zip(images_to_save["images"], images_to_save["paths"]):
            save_tanh_tensor(im, path)


def threaded_write(images, paths, num_threads=5):
    t_im = []
    t_p = []
    for im, p in zip(images, paths):
        t_im.append(im)
        t_p.append(p)
        if len(t_im) == num_threads:
            ts = [
                Thread(target=save_tanh_tensor, args=(_i, _p))
                for _i, _p in zip(t_im, t_p)
            ]
            list(map(lambda t: t.start(), ts))
            list(map(lambda t: t.join(), ts))
            t_im = []
            t_p = []
    if t_im:
        ts = [
            Thread(target=save_tanh_tensor, args=(_i, _p)) for _i, _p in zip(t_im, t_p)
        ]
        list(map(lambda t: t.start(), ts))
        list(map(lambda t: t.join(), ts))


def get_num_params(model):
    total_params = sum(p.numel() for p in model.parameters())
    return total_params


def vgg_preprocess(batch):
    """Preprocess batch to use VGG model"""
    tensortype = type(batch.data)
    (r, g, b) = torch.chunk(batch, 3, dim=1)
    batch = torch.cat((b, g, r), dim=1)  # convert RGB to BGR
    batch = (batch + 1) * 255 * 0.5  # [-1, 1] -> [0, 255]
    mean = tensortype(batch.data.size()).cuda()
    mean[:, 0, :, :] = 103.939
    mean[:, 1, :, :] = 116.779
    mean[:, 2, :, :] = 123.680
    batch = batch.sub(Variable(mean))  # subtract mean
    return batch


def zero_grad(model: nn.Module):
    """
    Sets gradients to None. Mode efficient than model.zero_grad()
    or opt.zero_grad() according to https://www.youtube.com/watch?v=9mS1fIYj1So

    Args:
        model (nn.Module): model to zero out
    """
    for p in model.parameters():
        p.grad = None


# Take the prediction of fake and real images from the combined batch
def divide_pred(disc_output):
    """
    Divide a multiscale discriminator's output into 2 sets of tensors,
    expecting the input to the discriminator to be a concatenation
    on the batch axis of real and fake (or fake and real) images,
    effectively doubling the batch size for better batchnorm statistics

    Args:
        disc_output (list | torch.Tensor): Discriminator output to split

    Returns:
        list | torch.Tensor[type]: pair of split outputs
    """
    # https://github.com/NVlabs/SPADE/blob/master/models/pix2pix_model.py
    # the prediction contains the intermediate outputs of multiscale GAN,
    # so it's usually a list
    if type(disc_output) == list:
        half1 = []
        half2 = []
        for p in disc_output:
            half1.append([tensor[: tensor.size(0) // 2] for tensor in p])
            half2.append([tensor[tensor.size(0) // 2 :] for tensor in p])
    else:
        half1 = disc_output[: disc_output.size(0) // 2]
        half2 = disc_output[disc_output.size(0) // 2 :]

    return half1, half2


def is_tpu_available():
    _torch_tpu_available = False
    try:
        import torch_xla.core.xla_model as xm  # type: ignore

        if "xla" in str(xm.xla_device()):
            _torch_tpu_available = True
        else:
            _torch_tpu_available = False
    except ImportError:
        _torch_tpu_available = False

    return _torch_tpu_available


def get_WGAN_gradient(input, output):
    # github code reference:
    # https://github.com/caogang/wgan-gp/blob/master/gan_cifar10.py
    # Calculate the gradient that WGAN-gp needs
    grads = autograd.grad(
        outputs=output,
        inputs=input,
        grad_outputs=torch.ones(output.size()).cuda(),
        create_graph=True,
        retain_graph=True,
        only_inputs=True,
    )[0]
    grads = grads.view(grads.size(0), -1)
    gp = ((grads.norm(2, dim=1) - 1) ** 2).mean()
    return gp


def print_num_parameters(trainer, force=False):
    if trainer.verbose == 0 and not force:
        return
    print("-" * 35)
    if trainer.G.encoder is not None:
        print(
            "{:21}:".format("num params encoder"),
            f"{get_num_params(trainer.G.encoder):12,}",
        )
    for d in trainer.G.decoders.keys():
        print(
            "{:21}:".format(f"num params decoder {d}"),
            f"{get_num_params(trainer.G.decoders[d]):12,}",
        )

    print(
        "{:21}:".format("num params painter"),
        f"{get_num_params(trainer.G.painter):12,}",
    )

    if trainer.D is not None:
        for d in trainer.D.keys():
            print(
                "{:21}:".format(f"num params discrim {d}"),
                f"{get_num_params(trainer.D[d]):12,}",
            )

    print("-" * 35)


def srgb2lrgb(x):
    x = normalize(x)
    im = ((x + 0.055) / 1.055) ** (2.4)
    im[x <= 0.04045] = x[x <= 0.04045] / 12.92
    return im


def lrgb2srgb(ims):
    if len(ims.shape) == 3:
        ims = [ims]
        stack = False
    else:
        ims = list(ims)
        stack = True

    outs = []
    for im in ims:

        out = torch.zeros_like(im)
        for k in range(3):
            temp = im[k, :, :]

            out[k, :, :] = 12.92 * temp * (temp <= 0.0031308) + (
                1.055 * torch.pow(temp, (1 / 2.4)) - 0.055
            ) * (temp > 0.0031308)
        outs.append(out)

    if stack:
        return torch.stack(outs)

    return outs[0]


def normalize(t, mini=0.0, maxi=1.0):
    """
    Normalizes a tensor to [0, 1].
    If the tensor has more than 3 dimensions, the first one
    is assumed to be the batch dimension and the tensor is
    normalized per batch element, not across the batches.

    Args:
        t (torch.Tensor): Tensor to normalize
        mini (float, optional): Min allowed value. Defaults to 0.
        maxi (float, optional): Max allowed value. Defaults to 1.

    Returns:
        torch.Tensor: The normalized tensor
    """
    if len(t.shape) == 3:
        return mini + (maxi - mini) * (t - t.min()) / (t.max() - t.min())

    batch_size = t.shape[0]
    extra_dims = [1] * (t.ndim - 1)
    min_t = t.reshape(batch_size, -1).min(1)[0].reshape(batch_size, *extra_dims)
    t = t - min_t
    max_t = t.reshape(batch_size, -1).max(1)[0].reshape(batch_size, *extra_dims)
    t = t / max_t
    return mini + (maxi - mini) * t


def retrieve_sky_mask(seg):
    """
    get the binary mask for the sky given a segmentation tensor
    of logits (N x C x H x W) or labels (N x H x W)

    Args:
        seg (torch.Tensor): Segmentation map

    Returns:
        torch.Tensor: Sky mask
    """
    if len(seg.shape) == 4:  # Predictions
        seg_ind = torch.argmax(seg, dim=1)
    else:
        seg_ind = seg

    sky_mask = seg_ind == 9
    return sky_mask


def all_texts_to_tensors(texts, width=640, height=40):
    """
    Creates a list of tensors with texts from PIL images

    Args:
        texts (list(str)): texts to write
        width (int, optional): width of individual texts. Defaults to 640.
        height (int, optional): height of individual texts. Defaults to 40.

    Returns:
        list(torch.Tensor): len(texts) tensors 3 x height x width
    """
    arrays = all_texts_to_array(texts, width, height)
    arrays = [array.transpose(2, 0, 1) for array in arrays]
    return [torch.tensor(array) for array in arrays]


def write_architecture(trainer):
    stem = "archi"
    out = Path(trainer.opts.output_path)

    # encoder
    with open(out / f"{stem}_encoder.txt", "w") as f:
        f.write(str(trainer.G.encoder))

    # decoders
    for k, v in trainer.G.decoders.items():
        with open(out / f"{stem}_decoder_{k}.txt", "w") as f:
            f.write(str(v))

    # painter
    if get_num_params(trainer.G.painter) > 0:
        with open(out / f"{stem}_painter.txt", "w") as f:
            f.write(str(trainer.G.painter))

    # discriminators
    if get_num_params(trainer.D) > 0:
        for k, v in trainer.D.items():
            with open(out / f"{stem}_discriminator_{k}.txt", "w") as f:
                f.write(str(v))

    with io.StringIO() as buf, redirect_stdout(buf):
        print_num_parameters(trainer)
        output = buf.getvalue()
        with open(out / "archi_num_params.txt", "w") as f:
            f.write(output)


def rand_perlin_2d(shape, res, fade=lambda t: 6 * t**5 - 15 * t**4 + 10 * t**3):
    delta = (res[0] / shape[0], res[1] / shape[1])
    d = (shape[0] // res[0], shape[1] // res[1])

    grid = (
        torch.stack(
            torch.meshgrid(
                torch.arange(0, res[0], delta[0]), torch.arange(0, res[1], delta[1])
            ),
            dim=-1,
        )
        % 1
    )
    angles = 2 * math.pi * torch.rand(res[0] + 1, res[1] + 1)
    gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim=-1)

    tile_grads = (
        lambda slice1, slice2: gradients[slice1[0] : slice1[1], slice2[0] : slice2[1]]
        .repeat_interleave(d[0], 0)
        .repeat_interleave(d[1], 1)
    )
    dot = lambda grad, shift: (  # noqa: E731
        torch.stack(
            (
                grid[: shape[0], : shape[1], 0] + shift[0],
                grid[: shape[0], : shape[1], 1] + shift[1],
            ),
            dim=-1,
        )
        * grad[: shape[0], : shape[1]]
    ).sum(dim=-1)

    n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0])
    n10 = dot(tile_grads([1, None], [0, -1]), [-1, 0])
    n01 = dot(tile_grads([0, -1], [1, None]), [0, -1])
    n11 = dot(tile_grads([1, None], [1, None]), [-1, -1])
    t = fade(grid[: shape[0], : shape[1]])
    return math.sqrt(2) * torch.lerp(
        torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1]
    )


def mix_noise(x, mask, res=(8, 3), weight=0.1):
    noise = rand_perlin_2d(x.shape[-2:], res).unsqueeze(0).unsqueeze(0).to(x.device)
    noise = noise - noise.min()
    mask = mask.repeat(1, 3, 1, 1).to(x.device).to(torch.float16)
    y = mask * (weight * noise + (1 - weight) * x) + (1 - mask) * x
    return y


def tensor_ims_to_np_uint8s(ims):
    """
    transform a CHW of NCHW tensor into a list of np.uint8 [0, 255]
    image arrays

    Args:
        ims (torch.Tensor | list): [description]
    """
    if not isinstance(ims, list):
        assert isinstance(ims, torch.Tensor)
        if ims.ndim == 3:
            ims = [ims]

    nps = []
    for t in ims:
        if t.shape[0] == 3:
            t = t.permute(1, 2, 0)
        else:
            assert t.shape[-1] == 3

        n = t.cpu().numpy()
        n = (n + 1) / 2 * 255
        nps.append(n.astype(np.uint8))

    return nps[0] if len(nps) == 1 else nps


def tensor_to_uint8_numpy_image(tensor):
    """
    Turns a BxCxHxW tensor into a numpy image:
    * normalize
    * to [0, 255]
    * detach
    * channels last
    * to uin8
    * to cpu
    * to numpy

    Args:
        tensor (torch.Tensor): Tensor to transform

    Returns:
        np.array: BxHxWxC np.uint8 array in [0, 255]
    """
    return (
        normalize(tensor, 0, 255)  # [0, 255]
        .detach()  # detach from graph if needed
        .permute(0, 2, 3, 1)  # BxHxWxC
        .to(torch.uint8)  # uint8
        .cpu()  # cpu
        .numpy()  # numpy array
    )