File size: 23,766 Bytes
448ebbd 3d5f935 448ebbd 3d5f935 448ebbd 3d5f935 448ebbd 3d5f935 448ebbd 3d5f935 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 |
"""Tensor-utils
"""
import io
import math
from contextlib import redirect_stdout
from pathlib import Path
# from copy import copy
from threading import Thread
import numpy as np
import torch
import torch.nn as nn
from skimage import io as skio
from torch import autograd
from torch.autograd import Variable
from torch.nn import init
from climategan.utils import all_texts_to_array
def transforms_string(ts):
return " -> ".join([t.__class__.__name__ for t in ts.transforms])
def init_weights(net, init_type="normal", init_gain=0.02, verbose=0, caller=""):
"""Initialize network weights.
Parameters:
net (network) -- network to be initialized
init_type (str) -- the name of an initialization method:
normal | xavier | kaiming | orthogonal
init_gain (float) -- scaling factor for normal, xavier and orthogonal.
We use 'normal' in the original pix2pix and CycleGAN paper.
But xavier and kaiming might work better for some applications.
Feel free to try yourself.
"""
if not init_type:
print(
"init_weights({}): init_type is {}, defaulting to normal".format(
caller + " " + net.__class__.__name__, init_type
)
)
init_type = "normal"
if not init_gain:
print(
"init_weights({}): init_gain is {}, defaulting to normal".format(
caller + " " + net.__class__.__name__, init_type
)
)
init_gain = 0.02
def init_func(m):
classname = m.__class__.__name__
if classname.find("BatchNorm2d") != -1:
if hasattr(m, "weight") and m.weight is not None:
init.normal_(m.weight.data, 1.0, init_gain)
if hasattr(m, "bias") and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif hasattr(m, "weight") and (
classname.find("Conv") != -1 or classname.find("Linear") != -1
):
if init_type == "normal":
init.normal_(m.weight.data, 0.0, init_gain)
elif init_type == "xavier":
init.xavier_normal_(m.weight.data, gain=init_gain)
elif init_type == "xavier_uniform":
init.xavier_uniform_(m.weight.data, gain=1.0)
elif init_type == "kaiming":
init.kaiming_normal_(m.weight.data, a=0, mode="fan_in")
elif init_type == "orthogonal":
init.orthogonal_(m.weight.data, gain=init_gain)
elif init_type == "none": # uses pytorch's default init method
m.reset_parameters()
else:
raise NotImplementedError(
"initialization method [%s] is not implemented" % init_type
)
if hasattr(m, "bias") and m.bias is not None:
init.constant_(m.bias.data, 0.0)
if verbose > 0:
print("initialize %s with %s" % (net.__class__.__name__, init_type))
net.apply(init_func)
def domains_to_class_tensor(domains, one_hot=False):
"""Converts a list of strings to a 1D Tensor representing the domains
domains_to_class_tensor(["sf", "rn"])
>>> torch.Tensor([2, 1])
Args:
domain (list(str)): each element of the list should be in {rf, rn, sf, sn}
one_hot (bool, optional): whether or not to 1-h encode class labels.
Defaults to False.
Raises:
ValueError: One of the domains listed is not in {rf, rn, sf, sn}
Returns:
torch.Tensor: 1D tensor mapping a domain to an int (not 1-hot) or 1-hot
domain labels in a 2D tensor
"""
mapping = {"r": 0, "s": 1}
if not all(domain in mapping for domain in domains):
raise ValueError(
"Unknown domains {} should be in {}".format(domains, list(mapping.keys()))
)
target = torch.tensor([mapping[domain] for domain in domains])
if one_hot:
one_hot_target = torch.FloatTensor(len(target), 2) # 2 domains
one_hot_target.zero_()
one_hot_target.scatter_(1, target.unsqueeze(1), 1)
# https://discuss.pytorch.org/t/convert-int-into-one-hot-format/507
target = one_hot_target
return target
def fake_domains_to_class_tensor(domains, one_hot=False):
"""Converts a list of strings to a 1D Tensor representing the fake domains
(real or sim only)
fake_domains_to_class_tensor(["s", "r"], False)
>>> torch.Tensor([0, 2])
Args:
domain (list(str)): each element of the list should be in {r, s}
one_hot (bool, optional): whether or not to 1-h encode class labels.
Defaults to False.
Raises:
ValueError: One of the domains listed is not in {rf, rn, sf, sn}
Returns:
torch.Tensor: 1D tensor mapping a domain to an int (not 1-hot) or
a 2D tensor filled with 0.25 to fool the classifier (equiprobability
for each domain).
"""
if one_hot:
target = torch.FloatTensor(len(domains), 2)
target.fill_(0.5)
else:
mapping = {"r": 1, "s": 0}
if not all(domain in mapping for domain in domains):
raise ValueError(
"Unknown domains {} should be in {}".format(
domains, list(mapping.keys())
)
)
target = torch.tensor([mapping[domain] for domain in domains])
return target
def show_tanh_tensor(tensor):
import skimage
if isinstance(tensor, torch.Tensor):
image = tensor.permute(1, 2, 0).detach().numpy()
else:
image = tensor
if image.shape[-1] != 3:
image = image.transpose(1, 2, 0)
if image.min() < 0 and image.min() > -1:
image = image / 2 + 0.5
elif image.min() < -1:
raise ValueError("can't handle this data")
skimage.io.imshow(image)
def normalize_tensor(t):
"""
Brings any tensor to the [0; 1] range.
Args:
t (torch.Tensor): input to normalize
Returns:
torch.Tensor: t projected to [0; 1]
"""
t = t - torch.min(t)
t = t / torch.max(t)
return t
def get_normalized_depth_t(tensor, domain, normalize=False, log=True):
assert not (normalize and log)
if domain == "r":
# megadepth depth
tensor = tensor.unsqueeze(0)
tensor = tensor - torch.min(tensor)
tensor = torch.true_divide(tensor, torch.max(tensor))
elif domain == "s":
# from 3-channel depth encoding from Unity simulator to 1-channel [0-1] values
tensor = decode_unity_depth_t(tensor, log=log, normalize=normalize)
elif domain == "kitti":
tensor = tensor / 100
if not log:
tensor = 1 / tensor
if normalize:
tensor = tensor - tensor.min()
tensor = tensor / tensor.max()
else:
tensor = torch.log(tensor)
tensor = tensor.unsqueeze(0)
return tensor
def decode_bucketed_depth(tensor, opts):
# tensor is size 1 x C x H x W
assert tensor.shape[0] == 1
idx = torch.argmax(tensor.squeeze(0), dim=0) # channels become dim 0 with squeeze
linspace_args = (
opts.gen.d.classify.linspace.min,
opts.gen.d.classify.linspace.max,
opts.gen.d.classify.linspace.buckets,
)
indexer = torch.linspace(*linspace_args)
log_depth = indexer[idx.long()].to(torch.float32) # H x W
depth = torch.exp(log_depth)
return depth.unsqueeze(0).unsqueeze(0).to(tensor.device)
def decode_unity_depth_t(unity_depth, log=True, normalize=False, numpy=False, far=1000):
"""Transforms the 3-channel encoded depth map from our Unity simulator
to 1-channel depth map containing metric depth values.
The depth is encoded in the following way:
- The information from the simulator is (1 - LinearDepth (in [0,1])).
far corresponds to the furthest distance to the camera included in the
depth map.
LinearDepth * far gives the real metric distance to the camera.
- depth is first divided in 31 slices encoded in R channel with values ranging
from 0 to 247
- each slice is divided again in 31 slices, whose value is encoded in G channel
- each of the G slices is divided into 256 slices, encoded in B channel
In total, we have a discretization of depth into N = 31*31*256 - 1 possible values,
covering a range of far/N meters.
Note that, what we encode here is 1 - LinearDepth so that the furthest point is
[0,0,0] (that is sky) and the closest point[255,255,255]
The metric distance associated to a pixel whose depth is (R,G,B) is :
d = (far/N) * [((255 - R)//8)*256*31 + ((255 - G)//8)*256 + (255 - B)]
* torch.Tensor in [0, 1] as torch.float32 if numpy == False
* else numpy.array in [0, 255] as np.uint8
Args:
unity_depth (torch.Tensor): one depth map obtained from our simulator
numpy (bool, optional): Whether to return a float tensor or an int array.
Defaults to False.
far: far parameter of the camera in Unity simulator.
Returns:
[torch.Tensor or numpy.array]: decoded depth
"""
R = unity_depth[:, :, 0]
G = unity_depth[:, :, 1]
B = unity_depth[:, :, 2]
R = ((247 - R) / 8).type(torch.IntTensor)
G = ((247 - G) / 8).type(torch.IntTensor)
B = (255 - B).type(torch.IntTensor)
depth = ((R * 256 * 31 + G * 256 + B).type(torch.FloatTensor)) / (256 * 31 * 31 - 1)
depth = depth * far
if not log:
depth = 1 / depth
depth = depth.unsqueeze(0) # (depth * far).unsqueeze(0)
if log:
depth = torch.log(depth)
if normalize:
depth = depth - torch.min(depth)
depth /= torch.max(depth)
if numpy:
depth = depth.data.cpu().numpy()
return depth.astype(np.uint8).squeeze()
return depth
def to_inv_depth(log_depth, numpy=False):
"""Convert log depth tensor to inverse depth image for display
Args:
depth (Tensor): log depth float tensor
"""
depth = torch.exp(log_depth)
# visualize prediction using inverse depth, so that we don't need sky
# segmentation (if you want to use RGB map for visualization,
# you have to run semantic segmentation to mask the sky first
# since the depth of sky is random from CNN)
inv_depth = 1 / depth
inv_depth /= torch.max(inv_depth)
if numpy:
inv_depth = inv_depth.data.cpu().numpy()
# you might also use percentile for better visualization
return inv_depth
def shuffle_batch_tuple(mbt):
"""shuffle the order of domains in the batch
Args:
mbt (tuple): multi-batch tuple
Returns:
list: randomized list of domain-specific batches
"""
assert isinstance(mbt, (tuple, list))
assert len(mbt) > 0
perm = np.random.permutation(len(mbt))
return [mbt[i] for i in perm]
def slice_batch(batch, slice_size):
assert slice_size > 0
for k, v in batch.items():
if isinstance(v, dict):
for task, d in v.items():
batch[k][task] = d[:slice_size]
else:
batch[k] = v[:slice_size]
return batch
def save_tanh_tensor(image, path):
"""Save an image which can be numpy or tensor, 2 or 3 dims (no batch)
to path.
Args:
image (np.array or torch.Tensor): image to save
path (pathlib.Path or str): where to save the image
"""
path = Path(path)
if isinstance(image, torch.Tensor):
image = image.detach().cpu().numpy()
if image.shape[-1] != 3 and image.shape[0] == 3:
image = np.transpose(image, (1, 2, 0))
if image.min() < 0 and image.min() > -1:
image = image / 2 + 0.5
elif image.min() < -1:
image -= image.min()
image /= image.max()
# print("Warning: scaling image data in save_tanh_tensor")
skio.imsave(path, (image * 255).astype(np.uint8))
def save_batch(multi_domain_batch, root="./", step=0, num_threads=5):
root = Path(root)
root.mkdir(parents=True, exist_ok=True)
images_to_save = {"paths": [], "images": []}
for domain, batch in multi_domain_batch.items():
y = batch["data"].get("y")
x = batch["data"]["x"]
if y is not None:
paths = batch["paths"]["x"]
imtensor = torch.cat([x, y], dim=-1)
for i, im in enumerate(imtensor):
imid = Path(paths[i]).stem[:10]
images_to_save["paths"] += [
root / "im_{}_{}_{}.png".format(step, domain, imid)
]
images_to_save["images"].append(im)
if num_threads > 0:
threaded_write(images_to_save["images"], images_to_save["paths"], num_threads)
else:
for im, path in zip(images_to_save["images"], images_to_save["paths"]):
save_tanh_tensor(im, path)
def threaded_write(images, paths, num_threads=5):
t_im = []
t_p = []
for im, p in zip(images, paths):
t_im.append(im)
t_p.append(p)
if len(t_im) == num_threads:
ts = [
Thread(target=save_tanh_tensor, args=(_i, _p))
for _i, _p in zip(t_im, t_p)
]
list(map(lambda t: t.start(), ts))
list(map(lambda t: t.join(), ts))
t_im = []
t_p = []
if t_im:
ts = [
Thread(target=save_tanh_tensor, args=(_i, _p)) for _i, _p in zip(t_im, t_p)
]
list(map(lambda t: t.start(), ts))
list(map(lambda t: t.join(), ts))
def get_num_params(model):
total_params = sum(p.numel() for p in model.parameters())
return total_params
def vgg_preprocess(batch):
"""Preprocess batch to use VGG model"""
tensortype = type(batch.data)
(r, g, b) = torch.chunk(batch, 3, dim=1)
batch = torch.cat((b, g, r), dim=1) # convert RGB to BGR
batch = (batch + 1) * 255 * 0.5 # [-1, 1] -> [0, 255]
mean = tensortype(batch.data.size()).cuda()
mean[:, 0, :, :] = 103.939
mean[:, 1, :, :] = 116.779
mean[:, 2, :, :] = 123.680
batch = batch.sub(Variable(mean)) # subtract mean
return batch
def zero_grad(model: nn.Module):
"""
Sets gradients to None. Mode efficient than model.zero_grad()
or opt.zero_grad() according to https://www.youtube.com/watch?v=9mS1fIYj1So
Args:
model (nn.Module): model to zero out
"""
for p in model.parameters():
p.grad = None
# Take the prediction of fake and real images from the combined batch
def divide_pred(disc_output):
"""
Divide a multiscale discriminator's output into 2 sets of tensors,
expecting the input to the discriminator to be a concatenation
on the batch axis of real and fake (or fake and real) images,
effectively doubling the batch size for better batchnorm statistics
Args:
disc_output (list | torch.Tensor): Discriminator output to split
Returns:
list | torch.Tensor[type]: pair of split outputs
"""
# https://github.com/NVlabs/SPADE/blob/master/models/pix2pix_model.py
# the prediction contains the intermediate outputs of multiscale GAN,
# so it's usually a list
if type(disc_output) == list:
half1 = []
half2 = []
for p in disc_output:
half1.append([tensor[: tensor.size(0) // 2] for tensor in p])
half2.append([tensor[tensor.size(0) // 2 :] for tensor in p])
else:
half1 = disc_output[: disc_output.size(0) // 2]
half2 = disc_output[disc_output.size(0) // 2 :]
return half1, half2
def is_tpu_available():
_torch_tpu_available = False
try:
import torch_xla.core.xla_model as xm # type: ignore
if "xla" in str(xm.xla_device()):
_torch_tpu_available = True
else:
_torch_tpu_available = False
except ImportError:
_torch_tpu_available = False
return _torch_tpu_available
def get_WGAN_gradient(input, output):
# github code reference:
# https://github.com/caogang/wgan-gp/blob/master/gan_cifar10.py
# Calculate the gradient that WGAN-gp needs
grads = autograd.grad(
outputs=output,
inputs=input,
grad_outputs=torch.ones(output.size()).cuda(),
create_graph=True,
retain_graph=True,
only_inputs=True,
)[0]
grads = grads.view(grads.size(0), -1)
gp = ((grads.norm(2, dim=1) - 1) ** 2).mean()
return gp
def print_num_parameters(trainer, force=False):
if trainer.verbose == 0 and not force:
return
print("-" * 35)
if trainer.G.encoder is not None:
print(
"{:21}:".format("num params encoder"),
f"{get_num_params(trainer.G.encoder):12,}",
)
for d in trainer.G.decoders.keys():
print(
"{:21}:".format(f"num params decoder {d}"),
f"{get_num_params(trainer.G.decoders[d]):12,}",
)
print(
"{:21}:".format("num params painter"),
f"{get_num_params(trainer.G.painter):12,}",
)
if trainer.D is not None:
for d in trainer.D.keys():
print(
"{:21}:".format(f"num params discrim {d}"),
f"{get_num_params(trainer.D[d]):12,}",
)
print("-" * 35)
def srgb2lrgb(x):
x = normalize(x)
im = ((x + 0.055) / 1.055) ** (2.4)
im[x <= 0.04045] = x[x <= 0.04045] / 12.92
return im
def lrgb2srgb(ims):
if len(ims.shape) == 3:
ims = [ims]
stack = False
else:
ims = list(ims)
stack = True
outs = []
for im in ims:
out = torch.zeros_like(im)
for k in range(3):
temp = im[k, :, :]
out[k, :, :] = 12.92 * temp * (temp <= 0.0031308) + (
1.055 * torch.pow(temp, (1 / 2.4)) - 0.055
) * (temp > 0.0031308)
outs.append(out)
if stack:
return torch.stack(outs)
return outs[0]
def normalize(t, mini=0.0, maxi=1.0):
"""
Normalizes a tensor to [0, 1].
If the tensor has more than 3 dimensions, the first one
is assumed to be the batch dimension and the tensor is
normalized per batch element, not across the batches.
Args:
t (torch.Tensor): Tensor to normalize
mini (float, optional): Min allowed value. Defaults to 0.
maxi (float, optional): Max allowed value. Defaults to 1.
Returns:
torch.Tensor: The normalized tensor
"""
if len(t.shape) == 3:
return mini + (maxi - mini) * (t - t.min()) / (t.max() - t.min())
batch_size = t.shape[0]
extra_dims = [1] * (t.ndim - 1)
min_t = t.reshape(batch_size, -1).min(1)[0].reshape(batch_size, *extra_dims)
t = t - min_t
max_t = t.reshape(batch_size, -1).max(1)[0].reshape(batch_size, *extra_dims)
t = t / max_t
return mini + (maxi - mini) * t
def retrieve_sky_mask(seg):
"""
get the binary mask for the sky given a segmentation tensor
of logits (N x C x H x W) or labels (N x H x W)
Args:
seg (torch.Tensor): Segmentation map
Returns:
torch.Tensor: Sky mask
"""
if len(seg.shape) == 4: # Predictions
seg_ind = torch.argmax(seg, dim=1)
else:
seg_ind = seg
sky_mask = seg_ind == 9
return sky_mask
def all_texts_to_tensors(texts, width=640, height=40):
"""
Creates a list of tensors with texts from PIL images
Args:
texts (list(str)): texts to write
width (int, optional): width of individual texts. Defaults to 640.
height (int, optional): height of individual texts. Defaults to 40.
Returns:
list(torch.Tensor): len(texts) tensors 3 x height x width
"""
arrays = all_texts_to_array(texts, width, height)
arrays = [array.transpose(2, 0, 1) for array in arrays]
return [torch.tensor(array) for array in arrays]
def write_architecture(trainer):
stem = "archi"
out = Path(trainer.opts.output_path)
# encoder
with open(out / f"{stem}_encoder.txt", "w") as f:
f.write(str(trainer.G.encoder))
# decoders
for k, v in trainer.G.decoders.items():
with open(out / f"{stem}_decoder_{k}.txt", "w") as f:
f.write(str(v))
# painter
if get_num_params(trainer.G.painter) > 0:
with open(out / f"{stem}_painter.txt", "w") as f:
f.write(str(trainer.G.painter))
# discriminators
if get_num_params(trainer.D) > 0:
for k, v in trainer.D.items():
with open(out / f"{stem}_discriminator_{k}.txt", "w") as f:
f.write(str(v))
with io.StringIO() as buf, redirect_stdout(buf):
print_num_parameters(trainer)
output = buf.getvalue()
with open(out / "archi_num_params.txt", "w") as f:
f.write(output)
def rand_perlin_2d(shape, res, fade=lambda t: 6 * t**5 - 15 * t**4 + 10 * t**3):
delta = (res[0] / shape[0], res[1] / shape[1])
d = (shape[0] // res[0], shape[1] // res[1])
grid = (
torch.stack(
torch.meshgrid(
torch.arange(0, res[0], delta[0]), torch.arange(0, res[1], delta[1])
),
dim=-1,
)
% 1
)
angles = 2 * math.pi * torch.rand(res[0] + 1, res[1] + 1)
gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim=-1)
tile_grads = (
lambda slice1, slice2: gradients[slice1[0] : slice1[1], slice2[0] : slice2[1]]
.repeat_interleave(d[0], 0)
.repeat_interleave(d[1], 1)
)
dot = lambda grad, shift: ( # noqa: E731
torch.stack(
(
grid[: shape[0], : shape[1], 0] + shift[0],
grid[: shape[0], : shape[1], 1] + shift[1],
),
dim=-1,
)
* grad[: shape[0], : shape[1]]
).sum(dim=-1)
n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0])
n10 = dot(tile_grads([1, None], [0, -1]), [-1, 0])
n01 = dot(tile_grads([0, -1], [1, None]), [0, -1])
n11 = dot(tile_grads([1, None], [1, None]), [-1, -1])
t = fade(grid[: shape[0], : shape[1]])
return math.sqrt(2) * torch.lerp(
torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1]
)
def mix_noise(x, mask, res=(8, 3), weight=0.1):
noise = rand_perlin_2d(x.shape[-2:], res).unsqueeze(0).unsqueeze(0).to(x.device)
noise = noise - noise.min()
mask = mask.repeat(1, 3, 1, 1).to(x.device).to(torch.float16)
y = mask * (weight * noise + (1 - weight) * x) + (1 - mask) * x
return y
def tensor_ims_to_np_uint8s(ims):
"""
transform a CHW of NCHW tensor into a list of np.uint8 [0, 255]
image arrays
Args:
ims (torch.Tensor | list): [description]
"""
if not isinstance(ims, list):
assert isinstance(ims, torch.Tensor)
if ims.ndim == 3:
ims = [ims]
nps = []
for t in ims:
if t.shape[0] == 3:
t = t.permute(1, 2, 0)
else:
assert t.shape[-1] == 3
n = t.cpu().numpy()
n = (n + 1) / 2 * 255
nps.append(n.astype(np.uint8))
return nps[0] if len(nps) == 1 else nps
def tensor_to_uint8_numpy_image(tensor):
"""
Turns a BxCxHxW tensor into a numpy image:
* normalize
* to [0, 255]
* detach
* channels last
* to uin8
* to cpu
* to numpy
Args:
tensor (torch.Tensor): Tensor to transform
Returns:
np.array: BxHxWxC np.uint8 array in [0, 255]
"""
return (
normalize(tensor, 0, 255) # [0, 255]
.detach() # detach from graph if needed
.permute(0, 2, 3, 1) # BxHxWxC
.to(torch.uint8) # uint8
.cpu() # cpu
.numpy() # numpy array
)
|