|
"""Define ExtraAdam and schedulers |
|
""" |
|
import math |
|
|
|
import torch |
|
from torch.optim import Adam, Optimizer, RMSprop, lr_scheduler |
|
from torch_optimizer import NovoGrad, RAdam |
|
|
|
|
|
def get_scheduler(optimizer, hyperparameters, iterations=-1): |
|
"""Get an optimizer's learning rate scheduler based on opts |
|
|
|
Args: |
|
optimizer (torch.Optimizer): optimizer for which to schedule the learning rate |
|
hyperparameters (addict.Dict): configuration options |
|
iterations (int, optional): The index of last epoch. Defaults to -1. |
|
When last_epoch=-1, sets initial lr as lr. |
|
|
|
Returns: |
|
[type]: [description] |
|
""" |
|
|
|
policy = hyperparameters.get("lr_policy") |
|
lr_step_size = hyperparameters.get("lr_step_size") |
|
lr_gamma = hyperparameters.get("lr_gamma") |
|
milestones = hyperparameters.get("lr_milestones") |
|
|
|
if policy is None or policy == "constant": |
|
scheduler = None |
|
elif policy == "step": |
|
scheduler = lr_scheduler.StepLR( |
|
optimizer, step_size=lr_step_size, gamma=lr_gamma, last_epoch=iterations, |
|
) |
|
elif policy == "multi_step": |
|
if isinstance(milestones, (list, tuple)): |
|
milestones = milestones |
|
elif isinstance(milestones, int): |
|
assert "lr_step_size" in hyperparameters |
|
if iterations == -1: |
|
last_milestone = 1000 |
|
else: |
|
last_milestone = iterations |
|
milestones = list(range(milestones, last_milestone, lr_step_size)) |
|
scheduler = lr_scheduler.MultiStepLR( |
|
optimizer, milestones=milestones, gamma=lr_gamma, last_epoch=iterations, |
|
) |
|
else: |
|
return NotImplementedError( |
|
"learning rate policy [%s] is not implemented", hyperparameters["lr_policy"] |
|
) |
|
return scheduler |
|
|
|
|
|
def get_optimizer(net, opt_conf, tasks=None, is_disc=False, iterations=-1): |
|
"""Returns a tuple (optimizer, scheduler) according to opt_conf which |
|
should come from the trainer's opts as: trainer.opts.<model>.opt |
|
|
|
Args: |
|
net (nn.Module): Network to update |
|
opt_conf (addict.Dict): optimizer and scheduler options |
|
tasks: list of tasks |
|
iterations (int, optional): Last epoch number. Defaults to -1, meaning |
|
start with base lr. |
|
|
|
Returns: |
|
Tuple: (torch.Optimizer, torch._LRScheduler) |
|
""" |
|
opt = scheduler = None |
|
lr_names = [] |
|
if tasks is None: |
|
lr_default = opt_conf.lr |
|
params = net.parameters() |
|
lr_names.append("full") |
|
elif isinstance(opt_conf.lr, float): |
|
lr_default = opt_conf.lr |
|
params = net.parameters() |
|
lr_names.append("full") |
|
elif len(opt_conf.lr) == 1: |
|
lr_default = opt_conf.lr.default |
|
params = net.parameters() |
|
lr_names.append("full") |
|
else: |
|
lr_default = opt_conf.lr.default |
|
params = list() |
|
for task in tasks: |
|
lr = opt_conf.lr.get(task, lr_default) |
|
parameters = None |
|
|
|
if not is_disc: |
|
if task == "m": |
|
parameters = net.encoder.parameters() |
|
params.append({"params": parameters, "lr": lr}) |
|
lr_names.append("encoder") |
|
|
|
if task == "p": |
|
if hasattr(net, "painter"): |
|
parameters = net.painter.parameters() |
|
lr_names.append("painter") |
|
else: |
|
parameters = net.decoders[task].parameters() |
|
lr_names.append(f"decoder_{task}") |
|
else: |
|
if task in net: |
|
parameters = net[task].parameters() |
|
lr_names.append(f"disc_{task}") |
|
|
|
if parameters is not None: |
|
params.append({"params": parameters, "lr": lr}) |
|
|
|
if opt_conf.optimizer.lower() == "extraadam": |
|
opt = ExtraAdam(params, lr=lr_default, betas=(opt_conf.beta1, 0.999)) |
|
elif opt_conf.optimizer.lower() == "novograd": |
|
opt = NovoGrad( |
|
params, lr=lr_default, betas=(opt_conf.beta1, 0) |
|
) |
|
elif opt_conf.optimizer.lower() == "radam": |
|
opt = RAdam(params, lr=lr_default, betas=(opt_conf.beta1, 0.999)) |
|
elif opt_conf.optimizer.lower() == "rmsprop": |
|
opt = RMSprop(params, lr=lr_default) |
|
else: |
|
opt = Adam(params, lr=lr_default, betas=(opt_conf.beta1, 0.999)) |
|
scheduler = get_scheduler(opt, opt_conf, iterations) |
|
return opt, scheduler, lr_names |
|
|
|
|
|
""" |
|
Extragradient Optimizer |
|
|
|
Mostly copied from the extragrad paper repo. |
|
|
|
MIT License |
|
Copyright (c) Facebook, Inc. and its affiliates. |
|
written by Hugo Berard (berard.hugo@gmail.com) while at Facebook. |
|
""" |
|
|
|
|
|
class Extragradient(Optimizer): |
|
"""Base class for optimizers with extrapolation step. |
|
Arguments: |
|
params (iterable): an iterable of :class:`torch.Tensor` s or |
|
:class:`dict` s. Specifies what Tensors should be optimized. |
|
defaults: (dict): a dict containing default values of optimization |
|
options (used when a parameter group doesn't specify them). |
|
""" |
|
|
|
def __init__(self, params, defaults): |
|
super(Extragradient, self).__init__(params, defaults) |
|
self.params_copy = [] |
|
|
|
def update(self, p, group): |
|
raise NotImplementedError |
|
|
|
def extrapolation(self): |
|
"""Performs the extrapolation step and save a copy of the current |
|
parameters for the update step. |
|
""" |
|
|
|
is_empty = len(self.params_copy) == 0 |
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
u = self.update(p, group) |
|
if is_empty: |
|
|
|
|
|
|
|
self.params_copy.append(p.data.clone()) |
|
if u is None: |
|
continue |
|
|
|
p.data.add_(u) |
|
|
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
if len(self.params_copy) == 0: |
|
raise RuntimeError("Need to call extrapolation before calling step.") |
|
|
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
i = -1 |
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
i += 1 |
|
u = self.update(p, group) |
|
if u is None: |
|
continue |
|
|
|
p.data = self.params_copy[i].add_(u) |
|
|
|
|
|
self.params_copy = [] |
|
return loss |
|
|
|
|
|
class ExtraAdam(Extragradient): |
|
"""Implements the Adam algorithm with extrapolation step. |
|
Arguments: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups |
|
lr (float, optional): learning rate (default: 1e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square (default: (0.9, 0.999)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
amsgrad (boolean, optional): whether to use the AMSGrad variant of this |
|
algorithm from the paper `On the Convergence of Adam and Beyond`_ |
|
""" |
|
|
|
def __init__( |
|
self, |
|
params, |
|
lr=1e-3, |
|
betas=(0.9, 0.999), |
|
eps=1e-8, |
|
weight_decay=0, |
|
amsgrad=False, |
|
): |
|
if not 0.0 <= lr: |
|
raise ValueError("Invalid learning rate: {}".format(lr)) |
|
if not 0.0 <= eps: |
|
raise ValueError("Invalid epsilon value: {}".format(eps)) |
|
if not 0.0 <= betas[0] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) |
|
if not 0.0 <= betas[1] < 1.0: |
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) |
|
defaults = dict( |
|
lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad |
|
) |
|
super(ExtraAdam, self).__init__(params, defaults) |
|
|
|
def __setstate__(self, state): |
|
super(ExtraAdam, self).__setstate__(state) |
|
for group in self.param_groups: |
|
group.setdefault("amsgrad", False) |
|
|
|
def update(self, p, group): |
|
if p.grad is None: |
|
return None |
|
grad = p.grad.data |
|
if grad.is_sparse: |
|
raise RuntimeError( |
|
"Adam does not support sparse gradients," |
|
+ " please consider SparseAdam instead" |
|
) |
|
amsgrad = group["amsgrad"] |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state["step"] = 0 |
|
|
|
state["exp_avg"] = torch.zeros_like(p.data) |
|
|
|
state["exp_avg_sq"] = torch.zeros_like(p.data) |
|
if amsgrad: |
|
|
|
state["max_exp_avg_sq"] = torch.zeros_like(p.data) |
|
|
|
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] |
|
if amsgrad: |
|
max_exp_avg_sq = state["max_exp_avg_sq"] |
|
beta1, beta2 = group["betas"] |
|
|
|
state["step"] += 1 |
|
|
|
if group["weight_decay"] != 0: |
|
grad = grad.add(group["weight_decay"], p.data) |
|
|
|
|
|
exp_avg.mul_(beta1).add_(1 - beta1, grad) |
|
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) |
|
if amsgrad: |
|
|
|
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) |
|
|
|
denom = max_exp_avg_sq.sqrt().add_(group["eps"]) |
|
else: |
|
denom = exp_avg_sq.sqrt().add_(group["eps"]) |
|
|
|
bias_correction1 = 1 - beta1 ** state["step"] |
|
bias_correction2 = 1 - beta2 ** state["step"] |
|
step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1 |
|
|
|
return -step_size * exp_avg / denom |
|
|