|
"""custom __str__ methods for ClimateGAN's classes |
|
""" |
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
def title(name, color="\033[94m"): |
|
name = "==== " + name + " ====" |
|
s = "=" * len(name) |
|
s = f"{s}\n{name}\n{s}" |
|
return f"\033[1m{color}{s}\033[0m" |
|
|
|
|
|
def generator(G): |
|
s = title("OmniGenerator", "\033[95m") + "\n" |
|
|
|
s += str(G.encoder) + "\n\n" |
|
for d in G.decoders: |
|
if d not in {"a", "t"}: |
|
s += str(G.decoders[d]) + "\n\n" |
|
elif d == "a": |
|
s += "[r & s]\n" + str(G.decoders["a"]["r"]) + "\n\n" |
|
else: |
|
if G.opts.gen.t.use_bit_conditioning: |
|
s += "[bit]\n" + str(G.decoders["t"]) + "\n\n" |
|
else: |
|
s += "[f & n]\n" + str(G.decoders["t"]["f"]) + "\n\n" |
|
return s.strip() |
|
|
|
|
|
def encoder(E): |
|
s = title("Encoder") + "\n" |
|
for b in E.model: |
|
s += str(b) + "\n" |
|
return s.strip() |
|
|
|
|
|
def get_conv_weight(conv): |
|
weight = torch.Tensor( |
|
conv.out_channels, conv.in_channels // conv.groups, *conv.kernel_size |
|
) |
|
return weight.shape |
|
|
|
|
|
def conv2dblock(obj): |
|
name = "{:20}".format("Conv2dBlock") |
|
s = "" |
|
if "SpectralNorm" in obj.conv.__class__.__name__: |
|
s = "SpectralNorm => " |
|
w = str(tuple(get_conv_weight(obj.conv.module))) |
|
else: |
|
w = str(tuple(get_conv_weight(obj.conv))) |
|
return f"{name}{s}{w}".strip() |
|
|
|
|
|
def resblocks(rb): |
|
s = "{}\n".format(f"ResBlocks({len(rb.model)})") |
|
for i, r in enumerate(rb.model): |
|
s += f" - ({i}) {str(r)}\n" |
|
return s.strip() |
|
|
|
|
|
def resblock(rb): |
|
s = "{:12}".format("Resblock") |
|
return f"{s}{rb.dim} channels, {rb.norm} norm + {rb.activation}" |
|
|
|
|
|
def basedecoder(bd): |
|
s = title(bd.__class__.__name__) + "\n" |
|
for b in bd.model: |
|
if isinstance(b, nn.Upsample) or "InterpolateNearest2d" in b.__class__.__name__: |
|
s += "{:20}".format("Upsample") + "x2\n" |
|
else: |
|
s += str(b) + "\n" |
|
return s.strip() |
|
|
|
|
|
def spaderesblock(srb): |
|
name = "{:20}".format("SPADEResnetBlock") + f"k {srb.kernel_size}, " |
|
s = f"{name}{srb.fin} > {srb.fout}, " |
|
s += f"param_free_norm: {srb.param_free_norm}, " |
|
s += f"spectral_norm: {srb.use_spectral_norm}" |
|
return s.strip() |
|
|
|
|
|
def spadedecoder(sd): |
|
s = title(sd.__class__.__name__) + "\n" |
|
up = "{:20}x2\n".format("Upsample") |
|
s += up |
|
s += str(sd.head_0) + "\n" |
|
s += up |
|
s += str(sd.G_middle_0) + "\n" |
|
s += up |
|
s += str(sd.G_middle_1) + "\n" |
|
for i, u in enumerate(sd.up_spades): |
|
s += up |
|
s += str(u) + "\n" |
|
s += "{:20}".format("Conv2d") + str(tuple(get_conv_weight(sd.conv_img))) + " tanh" |
|
return s |
|
|