climateGAN / climategan /strings.py
vict0rsch's picture
initial commit from cc-ai/climateGAN
448ebbd
raw
history blame
2.67 kB
"""custom __str__ methods for ClimateGAN's classes
"""
import torch
import torch.nn as nn
def title(name, color="\033[94m"):
name = "==== " + name + " ===="
s = "=" * len(name)
s = f"{s}\n{name}\n{s}"
return f"\033[1m{color}{s}\033[0m"
def generator(G):
s = title("OmniGenerator", "\033[95m") + "\n"
s += str(G.encoder) + "\n\n"
for d in G.decoders:
if d not in {"a", "t"}:
s += str(G.decoders[d]) + "\n\n"
elif d == "a":
s += "[r & s]\n" + str(G.decoders["a"]["r"]) + "\n\n"
else:
if G.opts.gen.t.use_bit_conditioning:
s += "[bit]\n" + str(G.decoders["t"]) + "\n\n"
else:
s += "[f & n]\n" + str(G.decoders["t"]["f"]) + "\n\n"
return s.strip()
def encoder(E):
s = title("Encoder") + "\n"
for b in E.model:
s += str(b) + "\n"
return s.strip()
def get_conv_weight(conv):
weight = torch.Tensor(
conv.out_channels, conv.in_channels // conv.groups, *conv.kernel_size
)
return weight.shape
def conv2dblock(obj):
name = "{:20}".format("Conv2dBlock")
s = ""
if "SpectralNorm" in obj.conv.__class__.__name__:
s = "SpectralNorm => "
w = str(tuple(get_conv_weight(obj.conv.module)))
else:
w = str(tuple(get_conv_weight(obj.conv)))
return f"{name}{s}{w}".strip()
def resblocks(rb):
s = "{}\n".format(f"ResBlocks({len(rb.model)})")
for i, r in enumerate(rb.model):
s += f" - ({i}) {str(r)}\n"
return s.strip()
def resblock(rb):
s = "{:12}".format("Resblock")
return f"{s}{rb.dim} channels, {rb.norm} norm + {rb.activation}"
def basedecoder(bd):
s = title(bd.__class__.__name__) + "\n"
for b in bd.model:
if isinstance(b, nn.Upsample) or "InterpolateNearest2d" in b.__class__.__name__:
s += "{:20}".format("Upsample") + "x2\n"
else:
s += str(b) + "\n"
return s.strip()
def spaderesblock(srb):
name = "{:20}".format("SPADEResnetBlock") + f"k {srb.kernel_size}, "
s = f"{name}{srb.fin} > {srb.fout}, "
s += f"param_free_norm: {srb.param_free_norm}, "
s += f"spectral_norm: {srb.use_spectral_norm}"
return s.strip()
def spadedecoder(sd):
s = title(sd.__class__.__name__) + "\n"
up = "{:20}x2\n".format("Upsample")
s += up
s += str(sd.head_0) + "\n"
s += up
s += str(sd.G_middle_0) + "\n"
s += up
s += str(sd.G_middle_1) + "\n"
for i, u in enumerate(sd.up_spades):
s += up
s += str(u) + "\n"
s += "{:20}".format("Conv2d") + str(tuple(get_conv_weight(sd.conv_img))) + " tanh"
return s