vict0rsch's picture
update from climategan space
3d5f935
raw
history blame
31.5 kB
"""All non-tensor utils
"""
import contextlib
import datetime
import json
import os
import re
import shutil
import subprocess
import time
import traceback
from os.path import expandvars
from pathlib import Path
from typing import Any, List, Optional, Union
from uuid import uuid4
import numpy as np
import torch
import yaml
from addict import Dict
from comet_ml import Experiment
comet_kwargs = {
"auto_metric_logging": False,
"parse_args": True,
"log_env_gpu": True,
"log_env_cpu": True,
"display_summary_level": 0,
}
IMG_EXTENSIONS = set(
[".jpg", ".JPG", ".jpeg", ".JPEG", ".png", ".PNG", ".ppm", ".PPM", ".bmp", ".BMP"]
)
def resolve(path):
"""
fully resolve a path:
resolve env vars ($HOME etc.) -> expand user (~) -> make absolute
Returns:
pathlib.Path: resolved absolute path
"""
return Path(expandvars(str(path))).expanduser().resolve()
def copy_run_files(opts: Dict) -> None:
"""
Copy the opts's sbatch_file to output_path
Args:
opts (addict.Dict): options
"""
if opts.sbatch_file:
p = resolve(opts.sbatch_file)
if p.exists():
o = resolve(opts.output_path)
if o.exists():
shutil.copyfile(p, o / p.name)
if opts.exp_file:
p = resolve(opts.exp_file)
if p.exists():
o = resolve(opts.output_path)
if o.exists():
shutil.copyfile(p, o / p.name)
def merge(
source: Union[dict, Dict], destination: Union[dict, Dict]
) -> Union[dict, Dict]:
"""
run me with nosetests --with-doctest file.py
>>> a = { 'first' : { 'all_rows' : { 'pass' : 'dog', 'number' : '1' } } }
>>> b = { 'first' : { 'all_rows' : { 'fail' : 'cat', 'number' : '5' } } }
>>> merge(b, a) == {
'first' : {
'all_rows' : { '
pass' : 'dog',
'fail' : 'cat',
'number' : '5'
}
}
}
True
"""
for key, value in source.items():
try:
if isinstance(value, dict):
# get node or create one
node = destination.setdefault(key, {})
merge(value, node)
else:
if isinstance(destination, dict):
destination[key] = value
else:
destination = {key: value}
except TypeError as e:
print(traceback.format_exc())
print(">>>", source)
print(">>>", destination)
print(">>>", key)
print(">>>", value)
raise Exception(e)
return destination
def load_opts(
path: Optional[Union[str, Path]] = None,
default: Optional[Union[str, Path, dict, Dict]] = None,
commandline_opts: Optional[Union[Dict, dict]] = None,
) -> Dict:
"""Loadsize a configuration Dict from 2 files:
1. default files with shared values across runs and users
2. an overriding file with run- and user-specific values
Args:
path (pathlib.Path): where to find the overriding configuration
default (pathlib.Path, optional): Where to find the default opts.
Defaults to None. In which case it is assumed to be a default config
which needs processing such as setting default values for lambdas and gen
fields
Returns:
addict.Dict: options dictionnary, with overwritten default values
"""
if path is None and default is None:
path = (
resolve(Path(__file__)).parent.parent
/ "shared"
/ "trainer"
/ "defaults.yaml"
)
if path:
path = resolve(path)
if default is None:
default_opts = {}
else:
if isinstance(default, (str, Path)):
with open(default, "r") as f:
default_opts = yaml.safe_load(f)
else:
default_opts = dict(default)
if path is None:
overriding_opts = {}
else:
with open(path, "r") as f:
overriding_opts = yaml.safe_load(f) or {}
opts = Dict(merge(overriding_opts, default_opts))
if commandline_opts is not None and isinstance(commandline_opts, dict):
opts = Dict(merge(commandline_opts, opts))
if opts.train.kitti.pretrained:
assert "kitti" in opts.data.files.train
assert "kitti" in opts.data.files.val
assert opts.train.kitti.epochs > 0
opts.domains = []
if "m" in opts.tasks or "s" in opts.tasks or "d" in opts.tasks:
opts.domains.extend(["r", "s"])
if "p" in opts.tasks:
opts.domains.append("rf")
if opts.train.kitti.pretrain:
opts.domains.append("kitti")
opts.domains = list(set(opts.domains))
if "s" in opts.tasks:
if opts.gen.encoder.architecture != opts.gen.s.architecture:
print(
"WARNING: segmentation encoder and decoder architectures do not match"
)
print(
"Encoder: {} <> Decoder: {}".format(
opts.gen.encoder.architecture, opts.gen.s.architecture
)
)
if opts.gen.m.use_spade:
if "d" not in opts.tasks or "s" not in opts.tasks:
raise ValueError(
"opts.gen.m.use_spade is True so tasks MUST include"
+ "both d and s, but received {}".format(opts.tasks)
)
if opts.gen.d.classify.enable:
raise ValueError(
"opts.gen.m.use_spade is True but using D as a classifier"
+ " which is a non-implemented combination"
)
if opts.gen.s.depth_feat_fusion is True or opts.gen.s.depth_dada_fusion is True:
opts.gen.s.use_dada = True
events_path = (
resolve(Path(__file__)).parent.parent / "shared" / "trainer" / "events.yaml"
)
if events_path.exists():
with events_path.open("r") as f:
events_dict = yaml.safe_load(f)
events_dict = Dict(events_dict)
opts.events = events_dict
return set_data_paths(opts)
def set_data_paths(opts: Dict) -> Dict:
"""Update the data files paths in data.files.train and data.files.val
from data.files.base
Args:
opts (addict.Dict): options
Returns:
addict.Dict: updated options
"""
for mode in ["train", "val"]:
for domain in opts.data.files[mode]:
if opts.data.files.base and not opts.data.files[mode][domain].startswith(
"/"
):
opts.data.files[mode][domain] = str(
Path(opts.data.files.base) / opts.data.files[mode][domain]
)
assert Path(
opts.data.files[mode][domain]
).exists(), "Cannot find {}".format(str(opts.data.files[mode][domain]))
return opts
def load_test_opts(test_file_path: str = "config/trainer/local_tests.yaml") -> Dict:
"""Returns the special opts set up for local tests
Args:
test_file_path (str, optional): Name of the file located in config/
Defaults to "local_tests.yaml".
Returns:
addict.Dict: Opts loaded from defaults.yaml and updated from test_file_path
"""
return load_opts(
Path(__file__).parent.parent / f"{test_file_path}",
default=Path(__file__).parent.parent / "shared/trainer/defaults.yaml",
)
def get_git_revision_hash() -> str:
"""Get current git hash the code is run from
Returns:
str: git hash
"""
try:
return subprocess.check_output(["git", "rev-parse", "HEAD"]).decode().strip()
except Exception as e:
return str(e)
def get_git_branch() -> str:
"""Get current git branch name
Returns:
str: git branch name
"""
try:
return (
subprocess.check_output(["git", "rev-parse", "--abbrev-ref", "HEAD"])
.decode()
.strip()
)
except Exception as e:
return str(e)
def kill_job(id: Union[int, str]) -> None:
subprocess.check_output(["scancel", str(id)])
def write_hash(path: Union[str, Path]) -> None:
hash_code = get_git_revision_hash()
with open(path, "w") as f:
f.write(hash_code)
def shortuid():
return str(uuid4()).split("-")[0]
def datenowshort():
"""
>>> a = str(datetime.datetime.now())
>>> print(a)
'2021-02-25 11:34:50.188072'
>>> print(a[5:].split(".")[0].replace(" ", "_"))
'02-25_11:35:41'
Returns:
str: month-day_h:m:s
"""
return str(datetime.datetime.now())[5:].split(".")[0].replace(" ", "_")
def get_increased_path(path: Union[str, Path], use_date: bool = False) -> Path:
"""Returns an increased path: if dir exists, returns `dir (1)`.
If `dir (i)` exists, returns `dir (max(i) + 1)`
get_increased_path("test").mkdir() creates `test/`
then
get_increased_path("test").mkdir() creates `test (1)/`
etc.
if `test (3)/` exists but not `test (2)/`, `test (4)/` is created so that indexes
always increase
Args:
path (str or pathlib.Path): the file/directory which may already exist and would
need to be increased
Returns:
pathlib.Path: increased path
"""
fp = resolve(path)
if not fp.exists():
return fp
if fp.is_file():
if not use_date:
while fp.exists():
fp = fp.parent / f"{fp.stem}--{shortuid()}{fp.suffix}"
return fp
else:
while fp.exists():
time.sleep(0.5)
fp = fp.parent / f"{fp.stem}--{datenowshort()}{fp.suffix}"
return fp
if not use_date:
while fp.exists():
fp = fp.parent / f"{fp.name}--{shortuid()}"
return fp
else:
while fp.exists():
time.sleep(0.5)
fp = fp.parent / f"{fp.name}--{datenowshort()}"
return fp
# vals = []
# for n in fp.parent.glob("{}*".format(fp.stem)):
# if re.match(r".+\(\d+\)", str(n.name)) is not None:
# name = str(n.name)
# start = name.index("(")
# end = name.index(")")
# vals.append(int(name[start + 1 : end]))
# if vals:
# ext = " ({})".format(max(vals) + 1)
# elif fp.exists():
# ext = " (1)"
# else:
# ext = ""
# return fp.parent / (fp.stem + ext + fp.suffix)
def env_to_path(path: str) -> str:
"""Transorms an environment variable mention in a json
into its actual value. E.g. $HOME/clouds -> /home/vsch/clouds
Args:
path (str): path potentially containing the env variable
"""
path_elements = path.split("/")
new_path = []
for el in path_elements:
if "$" in el:
new_path.append(os.environ[el.replace("$", "")])
else:
new_path.append(el)
return "/".join(new_path)
def flatten_opts(opts: Dict) -> dict:
"""Flattens a multi-level addict.Dict or native dictionnary into a single
level native dict with string keys representing the keys sequence to reach
a value in the original argument.
d = addict.Dict()
d.a.b.c = 2
d.a.b.d = 3
d.a.e = 4
d.f = 5
flatten_opts(d)
>>> {
"a.b.c": 2,
"a.b.d": 3,
"a.e": 4,
"f": 5,
}
Args:
opts (addict.Dict or dict): addict dictionnary to flatten
Returns:
dict: flattened dictionnary
"""
values_list = []
def p(d, prefix="", vals=[]):
for k, v in d.items():
if isinstance(v, (Dict, dict)):
p(v, prefix + k + ".", vals)
elif isinstance(v, list):
if v and isinstance(v[0], (Dict, dict)):
for i, m in enumerate(v):
p(m, prefix + k + "." + str(i) + ".", vals)
else:
vals.append((prefix + k, str(v)))
else:
if isinstance(v, Path):
v = str(v)
vals.append((prefix + k, v))
p(opts, vals=values_list)
return dict(values_list)
def get_comet_rest_api_key(
path_to_config_file: Optional[Union[str, Path]] = None
) -> str:
"""Gets a comet.ml rest_api_key in the following order:
* config file specified as argument
* environment variable
* .comet.config file in the current working diretory
* .comet.config file in your home
config files must have a line like `rest_api_key=<some api key>`
Args:
path_to_config_file (str or pathlib.Path, optional): config_file to use.
Defaults to None.
Raises:
ValueError: can't find a file
ValueError: can't find the key in a file
Returns:
str: your comet rest_api_key
"""
if "COMET_REST_API_KEY" in os.environ and path_to_config_file is None:
return os.environ["COMET_REST_API_KEY"]
if path_to_config_file is not None:
p = resolve(path_to_config_file)
else:
p = Path() / ".comet.config"
if not p.exists():
p = Path.home() / ".comet.config"
if not p.exists():
raise ValueError("Unable to find your COMET_REST_API_KEY")
with p.open("r") as f:
for keys in f:
if "rest_api_key" in keys:
return keys.strip().split("=")[-1].strip()
raise ValueError("Unable to find your COMET_REST_API_KEY in {}".format(str(p)))
def get_files(dirName: str) -> list:
# create a list of file and sub directories
files = sorted(os.listdir(dirName))
all_files = list()
for entry in files:
fullPath = os.path.join(dirName, entry)
if os.path.isdir(fullPath):
all_files = all_files + get_files(fullPath)
else:
all_files.append(fullPath)
return all_files
def make_json_file(
tasks: List[str],
addresses: List[str], # for windows user, use "\\" instead of using "/"
json_names: List[str] = ["train_jsonfile.json", "val_jsonfile.json"],
splitter: str = "/",
pourcentage_val: float = 0.15,
) -> None:
"""
How to use it?
e.g.
make_json_file(['x','m','d'], [
'/network/tmp1/ccai/data/munit_dataset/trainA_size_1200/',
'/network/tmp1/ccai/data/munit_dataset/seg_trainA_size_1200/',
'/network/tmp1/ccai/data/munit_dataset/trainA_megadepth_resized/'
], ["train_r.json", "val_r.json"])
Args:
tasks (list): the list of image type like 'x', 'm', 'd', etc.
addresses (list): the list of the corresponding address of the
image type mentioned in tasks
json_names (list): names for the json files, train being first
(e.g. : ["train_r.json", "val_r.json"])
splitter (str, optional): The path separator for the current OS.
Defaults to '/'.
pourcentage_val: pourcentage of files to go in validation set
"""
assert len(tasks) == len(addresses), "keys and addresses must have the same length!"
files = [get_files(addresses[j]) for j in range(len(tasks))]
n_files_val = int(pourcentage_val * len(files[0]))
n_files_train = len(files[0]) - n_files_val
filenames = [files[0][:n_files_train], files[0][-n_files_val:]]
file_address_map = {
tasks[j]: {
".".join(file.split(splitter)[-1].split(".")[:-1]): file
for file in files[j]
}
for j in range(len(tasks))
}
# The tasks of the file_address_map are like 'x', 'm', 'd'...
# The values of the file_address_map are a dictionary whose tasks are the
# filenames without extension whose values are the path of the filename
# e.g. file_address_map =
# {'x': {'A': 'path/to/trainA_size_1200/A.png', ...},
# 'm': {'A': 'path/to/seg_trainA_size_1200/A.jpg',...}
# 'd': {'A': 'path/to/trainA_megadepth_resized/A.bmp',...}
# ...}
for i, json_name in enumerate(json_names):
dicts = []
for j in range(len(filenames[i])):
file = filenames[i][j]
filename = file.split(splitter)[-1] # the filename with 'x' extension
filename_ = ".".join(
filename.split(".")[:-1]
) # the filename without extension
tmp_dict = {}
for k in range(len(tasks)):
tmp_dict[tasks[k]] = file_address_map[tasks[k]][filename_]
dicts.append(tmp_dict)
with open(json_name, "w", encoding="utf-8") as outfile:
json.dump(dicts, outfile, ensure_ascii=False)
def append_task_to_json(
path_to_json: Union[str, Path],
path_to_new_json: Union[str, Path],
path_to_new_images_dir: Union[str, Path],
new_task_name: str,
):
"""Add all files for a task to an existing json file by creating a new json file
in the specified path.
Assumes that the files for the new task have exactly the same names as the ones
for the other tasks
Args:
path_to_json: complete path to the json file to modify
path_to_new_json: complete path to the new json file to be created
path_to_new_images_dir: complete path of the directory where to find the
images for the new task
new_task_name: name of the new task
e.g:
append_json(
"/network/tmp1/ccai/data/climategan/seg/train_r.json",
"/network/tmp1/ccai/data/climategan/seg/train_r_new.json"
"/network/tmp1/ccai/data/munit_dataset/trainA_seg_HRNet/unity_labels",
"s",
)
"""
ims_list = None
if path_to_json:
path_to_json = Path(path_to_json).resolve()
with open(path_to_json, "r") as f:
ims_list = json.load(f)
files = get_files(path_to_new_images_dir)
if ims_list is None:
raise ValueError(f"Could not find the list in {path_to_json}")
new_ims_list = [None] * len(ims_list)
for i, im_dict in enumerate(ims_list):
new_ims_list[i] = {}
for task, path in im_dict.items():
new_ims_list[i][task] = path
for i, im_dict in enumerate(ims_list):
for task, path in im_dict.items():
file_name = os.path.splitext(path)[0] # removes extension
file_name = file_name.rsplit("/", 1)[-1] # only the file_name
file_found = False
for file_path in files:
if file_name in file_path:
file_found = True
new_ims_list[i][new_task_name] = file_path
break
if file_found:
break
else:
print("Error! File ", file_name, "not found in directory!")
return
with open(path_to_new_json, "w", encoding="utf-8") as f:
json.dump(new_ims_list, f, ensure_ascii=False)
def sum_dict(dict1: Union[dict, Dict], dict2: Union[Dict, dict]) -> Union[dict, Dict]:
"""Add dict2 into dict1"""
for k, v in dict2.items():
if not isinstance(v, dict):
dict1[k] += v
else:
sum_dict(dict1[k], dict2[k])
return dict1
def div_dict(dict1: Union[dict, Dict], div_by: float) -> dict:
"""Divide elements of dict1 by div_by"""
for k, v in dict1.items():
if not isinstance(v, dict):
dict1[k] /= div_by
else:
div_dict(dict1[k], div_by)
return dict1
def comet_id_from_url(url: str) -> Optional[str]:
"""
Get comet exp id from its url:
https://www.comet.ml/vict0rsch/climategan/2a1a4a96afe848218c58ac4e47c5375f
-> 2a1a4a96afe848218c58ac4e47c5375f
Args:
url (str): comet exp url
Returns:
str: comet exp id
"""
try:
ids = url.split("/")
ids = [i for i in ids if i]
return ids[-1]
except Exception:
return None
@contextlib.contextmanager
def temp_np_seed(seed: Optional[int]) -> None:
"""
Set temporary numpy seed:
with temp_np_seed(123):
np.random.permutation(3)
Args:
seed (int): temporary numpy seed
"""
state = np.random.get_state()
np.random.seed(seed)
try:
yield
finally:
np.random.set_state(state)
def get_display_indices(opts: Dict, domain: str, length: int) -> list:
"""
Compute the index of images to use for comet logging:
if opts.comet.display_indices is an int, and domain is real:
return range(int)
if opts.comet.display_indices is an int, and domain is sim:
return permutation(length)[:int]
if opts.comet.display_indices is a list:
return list
otherwise return []
Args:
opts (addict.Dict): options
domain (str): domain for those indices
length (int): length of dataset for the permutation
Returns:
list(int): The indices to display
"""
if domain == "rf":
dsize = max([opts.comet.display_size, opts.train.fid.get("n_images", 0)])
else:
dsize = opts.comet.display_size
if dsize > length:
print(
f"Warning: dataset is smaller ({length} images) "
+ f"than required display indices ({dsize})."
+ f" Selecting {length} images."
)
display_indices = []
assert isinstance(dsize, (int, list)), "Unknown display size {}".format(dsize)
if isinstance(dsize, int):
assert dsize >= 0, "Display size cannot be < 0"
with temp_np_seed(123):
display_indices = list(np.random.permutation(length)[:dsize])
elif isinstance(dsize, list):
display_indices = dsize
if not display_indices:
print("Warning: no display indices (utils.get_display_indices)")
return display_indices
def get_latest_path(path: Union[str, Path]) -> Path:
"""
Get the file/dir with largest increment i as `file (i).ext`
Args:
path (str or pathlib.Path): base pattern
Returns:
Path: path found
"""
p = Path(path).resolve()
s = p.stem
e = p.suffix
files = list(p.parent.glob(f"{s}*(*){e}"))
indices = list(p.parent.glob(f"{s}*(*){e}"))
indices = list(map(lambda f: f.name, indices))
indices = list(map(lambda x: re.findall(r"\((.*?)\)", x)[-1], indices))
indices = list(map(int, indices))
if not indices:
f = p
else:
f = files[np.argmax(indices)]
return f
def get_existing_jobID(output_path: Path) -> str:
"""
If the opts in output_path have a jobID, return it. Else, return None
Args:
output_path (pathlib.Path | str): where to look
Returns:
str | None: jobid
"""
op = Path(output_path)
if not op.exists():
return
opts_path = get_latest_path(op / "opts.yaml")
if not opts_path.exists():
return
with opts_path.open("r") as f:
opts = yaml.safe_load(f)
jobID = opts.get("jobID", None)
return jobID
def find_existing_training(opts: Dict) -> Optional[Path]:
"""
Looks in all directories like output_path.parent.glob(output_path.name*)
and compares the logged slurm job id with the current opts.jobID
If a match is found, the training should automatically continue in the
matching output directory
If no match is found, this is a new job and it should have a new output path
Args:
opts (Dict): trainer's options
Returns:
Optional[Path]: a path if a matchin jobID is found, None otherwise
"""
if opts.jobID is None:
print("WARNING: current JOBID is None")
return
print("---------- Current job id:", opts.jobID)
path = Path(opts.output_path).resolve()
parent = path.parent
name = path.name
try:
similar_dirs = [p.resolve() for p in parent.glob(f"{name}*") if p.is_dir()]
for sd in similar_dirs:
candidate_jobID = get_existing_jobID(sd)
if candidate_jobID is not None and str(opts.jobID) == str(candidate_jobID):
print(f"Found matching job id in {sd}\n")
return sd
print("Did not find a matching job id in \n {}\n".format(str(similar_dirs)))
except Exception as e:
print("ERROR: Could not resume (find_existing_training)", e)
def pprint(*args: List[Any]):
"""
Prints *args within a box of "=" characters
"""
txt = " ".join(map(str, args))
col = "====="
space = " "
head_size = 2
header = "\n".join(["=" * (len(txt) + 2 * (len(col) + len(space)))] * head_size)
empty = "{}{}{}{}{}".format(col, space, " " * (len(txt)), space, col)
print()
print(header)
print(empty)
print("{}{}{}{}{}".format(col, space, txt, space, col))
print(empty)
print(header)
print()
def get_existing_comet_id(path: str) -> Optional[str]:
"""
Returns the id of the existing comet experiment stored in path
Args:
path (str): Output pat where to look for the comet exp
Returns:
Optional[str]: comet exp's ID if any was found
"""
comet_previous_path = get_latest_path(Path(path) / "comet_url.txt")
if comet_previous_path.exists():
with comet_previous_path.open("r") as f:
url = f.read().strip()
return comet_id_from_url(url)
def get_latest_opts(path):
"""
get latest opts dumped in path if they look like *opts*.yaml
and were increased as
opts.yaml < opts (1).yaml < opts (2).yaml etc.
Args:
path (str or pathlib.Path): where to look for opts
Raises:
ValueError: If no match for *opts*.yaml is found
Returns:
addict.Dict: loaded opts
"""
path = Path(path)
opts = get_latest_path(path / "opts.yaml")
assert opts.exists()
with opts.open("r") as f:
opts = Dict(yaml.safe_load(f))
events_path = Path(__file__).parent.parent / "shared" / "trainer" / "events.yaml"
if events_path.exists():
with events_path.open("r") as f:
events_dict = yaml.safe_load(f)
events_dict = Dict(events_dict)
opts.events = events_dict
return opts
def text_to_array(text, width=640, height=40):
"""
Creates a numpy array of shape height x width x 3 with
text written on it using PIL
Args:
text (str): text to write
width (int, optional): Width of the resulting array. Defaults to 640.
height (int, optional): Height of the resulting array. Defaults to 40.
Returns:
np.ndarray: Centered text
"""
from PIL import Image, ImageDraw, ImageFont
img = Image.new("RGB", (width, height), (255, 255, 255))
try:
font = ImageFont.truetype("UnBatang.ttf", 25)
except OSError:
font = ImageFont.load_default()
d = ImageDraw.Draw(img)
text_width, text_height = d.textsize(text)
h = 40 // 2 - 3 * text_height // 2
w = width // 2 - text_width
d.text((w, h), text, font=font, fill=(30, 30, 30))
return np.array(img)
def all_texts_to_array(texts, width=640, height=40):
"""
Creates an array of texts, each of height and width specified
by the args, concatenated along their width dimension
Args:
texts (list(str)): List of texts to concatenate
width (int, optional): Individual text's width. Defaults to 640.
height (int, optional): Individual text's height. Defaults to 40.
Returns:
list: len(texts) text arrays with dims height x width x 3
"""
return [text_to_array(text, width, height) for text in texts]
class Timer:
def __init__(self, name="", store=None, precision=3, ignore=False, cuda=None):
self.name = name
self.store = store
self.precision = precision
self.ignore = ignore
self.cuda = cuda if cuda is not None else torch.cuda.is_available()
if self.cuda:
self._start_event = torch.cuda.Event(enable_timing=True)
self._end_event = torch.cuda.Event(enable_timing=True)
def format(self, n):
return f"{n:.{self.precision}f}"
def __enter__(self):
"""Start a new timer as a context manager"""
if self.cuda:
self._start_event.record()
else:
self._start_time = time.perf_counter()
return self
def __exit__(self, *exc_info):
"""Stop the context manager timer"""
if self.ignore:
return
if self.cuda:
self._end_event.record()
torch.cuda.synchronize()
new_time = self._start_event.elapsed_time(self._end_event) / 1000
else:
t = time.perf_counter()
new_time = t - self._start_time
if self.store is not None:
assert isinstance(self.store, list)
self.store.append(new_time)
if self.name:
print(f"[{self.name}] Elapsed time: {self.format(new_time)}")
def get_loader_output_shape_from_opts(opts):
transforms = opts.data.transforms
t = None
for t in transforms[::-1]:
if t.name == "resize":
break
assert t is not None
if isinstance(t.new_size, Dict):
return {
task: (
t.new_size.get(task, t.new_size.default),
t.new_size.get(task, t.new_size.default),
)
for task in opts.tasks + ["x"]
}
assert isinstance(t.new_size, int)
new_size = (t.new_size, t.new_size)
return {task: new_size for task in opts.tasks + ["x"]}
def find_target_size(opts, task):
target_size = None
if isinstance(opts.data.transforms[-1].new_size, int):
target_size = opts.data.transforms[-1].new_size
else:
if task in opts.data.transforms[-1].new_size:
target_size = opts.data.transforms[-1].new_size[task]
else:
assert "default" in opts.data.transforms[-1].new_size
target_size = opts.data.transforms[-1].new_size["default"]
return target_size
def to_128(im, w_target=-1):
h, w = im.shape[:2]
aspect_ratio = h / w
if w_target < 0:
w_target = w
nw = int(w_target / 128) * 128
nh = int(nw * aspect_ratio / 128) * 128
return nh, nw
def is_image_file(filename):
"""Check that a file's name points to a known image format"""
if isinstance(filename, Path):
return filename.suffix in IMG_EXTENSIONS
return Path(filename).suffix in IMG_EXTENSIONS
def find_images(path, recursive=False):
"""
Get a list of all images contained in a directory:
- path.glob("*") if not recursive
- path.glob("**/*") if recursive
"""
p = Path(path)
assert p.exists()
assert p.is_dir()
pattern = "*"
if recursive:
pattern += "*/*"
return [i for i in p.glob(pattern) if i.is_file() and is_image_file(i)]
def cols():
try:
col = os.get_terminal_size().columns
except Exception:
col = 50
return col
def upload_images_to_exp(
path, exp=None, project_name="climategan-eval", sleep=-1, verbose=0
):
ims = find_images(path)
end = None
c = cols()
if verbose == 1:
end = "\r"
if verbose > 1:
end = "\n"
if exp is None:
exp = Experiment(project_name=project_name)
for im in ims:
exp.log_image(str(im))
if verbose > 0:
if verbose == 1:
print(" " * (c - 1), end="\r", flush=True)
print(str(im), end=end, flush=True)
if sleep > 0:
time.sleep(sleep)
return exp