File size: 4,760 Bytes
918d302 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---
# bertopic_dcd_auto_final
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
## Usage
To use this model, please install BERTopic:
```
pip install -U bertopic
```
You can use the model as follows:
```python
from bertopic import BERTopic
topic_model = BERTopic.load("vidric/bertopic_dcd_auto_final")
topic_model.get_topic_info()
```
## Topic overview
* Number of topics: 40
* Number of training documents: 22195
<details>
<summary>Click here for an overview of all topics.</summary>
| Topic ID | Topic Keywords | Topic Frequency | Label |
|----------|----------------|-----------------|-------|
| -1 | wangi - tidak - banget - parfum - hmns | 12 | -1_wangi_tidak_banget_parfum |
| 0 | wangi - mantap - banget - enak - suka | 7512 | 0_wangi_mantap_banget_enak |
| 1 | alpha - farhampton - beli - saya - sama | 12436 | 1_alpha_farhampton_beli_saya |
| 2 | hari - sampai - kirim - minggu - pesan | 903 | 2_hari_sampai_kirim_minggu |
| 3 | order - repeat - kali - kesekian - bakal | 177 | 3_order_repeat_kali_kesekian |
| 4 | kalem - nyengat - wangi - enak - banget | 118 | 4_kalem_nyengat_wangi_enak |
| 5 | indonesia - bangga - produk - terus - harumkan | 70 | 5_indonesia_bangga_produk_terus |
| 6 | kualitas - bagus - produk - barang - baik | 63 | 6_kualitas_bagus_produk_barang |
| 7 | selamat - mendarat - dengan - barang - sampai | 61 | 7_selamat_mendarat_dengan_barang |
| 8 | respon - cepat - quick - good - jawab | 59 | 8_respon_cepat_quick_good |
| 9 | produk - bagus - sangat - penawaran - oke | 54 | 9_produk_bagus_sangat_penawaran |
| 10 | pokok - mantap - puas - jon - epic | 49 | 10_pokok_mantap_puas_jon |
| 11 | voucher - 50rb - 50k - dapat - 50 | 44 | 11_voucher_50rb_50k_dapat |
| 12 | hadiah - buat - semoga - dia - cocok | 39 | 12_hadiah_buat_semoga_dia |
| 13 | test - tester - mari - kita - coba | 35 | 13_test_tester_mari_kita |
| 14 | deskripsi - sesuai - barang - dengan - bagus | 34 | 14_deskripsi_sesuai_barang_dengan |
| 15 | worth - it - harga - sepadan - serius | 33 | 15_worth_it_harga_sepadan |
| 16 | chat - admin - barang - balas - respon | 33 | 16_chat_admin_barang_balas |
| 17 | 10ml - 10 - ml - 50ml - beli | 32 | 17_10ml_10_ml_50ml |
| 18 | layanan - service - baik - barang - oke | 31 | 18_layanan_service_baik_barang |
| 19 | 10 - silage - kedepanya - mayanlah - kemasin | 30 | 19_10_silage_kedepanya_mayanlah |
| 20 | kartu - card - tulis - greting - ucap | 30 | 20_kartu_card_tulis_greting |
| 21 | beli - 4x - bintang - kedua - pemesanan | 28 | 21_beli_4x_bintang_kedua |
| 22 | bicara - bintang - biar - nyang - limo | 28 | 22_bicara_bintang_biar_nyang |
| 23 | unik - istimewa - exceptional - addicted - cerita | 25 | 23_unik_istimewa_exceptional_addicted |
| 24 | buka - kotak - box - belum - unboxing | 25 | 24_buka_kotak_box_belum |
| 25 | akhirnya - bagi - dapat - juara - finaly | 21 | 25_akhirnya_bagi_dapat_juara |
| 26 | starterpacking - semakin - gara - bantu - merosot | 20 | 26_starterpacking_semakin_gara_bantu |
| 27 | review - orang - saja - zodiak - mag | 19 | 27_review_orang_saja_zodiak |
| 28 | ketiga - kali - memuaskan - beli - selalu | 18 | 28_ketiga_kali_memuaskan_beli |
| 29 | layanan - langsung - baru - cepat - service | 17 | 29_layanan_langsung_baru_cepat |
| 30 | admin - ramah - tersampaikan - mantap - layanan | 17 | 30_admin_ramah_tersampaikan_mantap |
| 31 | layanan - produk - bagus - service - terbaik | 17 | 31_layanan_produk_bagus_service |
| 32 | notes - note - midlle - base - mbak | 16 | 32_notes_note_midlle_base |
| 33 | bangga - lokal - pride - maszeh - kualitas | 16 | 33_bangga_lokal_pride_maszeh |
| 34 | bintang - harum - kasih - lima - hmns | 16 | 34_bintang_harum_kasih_lima |
| 35 | botol - kedua - tiga - sihir - ketiga | 15 | 35_botol_kedua_tiga_sihir |
| 36 | 10 - voucher - hari - november - tanggal | 15 | 36_10_voucher_hari_november |
| 37 | delta - team - deltanya - theta - senjata | 14 | 37_delta_team_deltanya_theta |
| 38 | travel - praktis - kecil - ukuran - tepa | 13 | 38_travel_praktis_kecil_ukuran |
</details>
## Training hyperparameters
* calculate_probabilities: True
* language: None
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: auto
* seed_topic_list: None
* top_n_words: 10
* verbose: False
## Framework versions
* Numpy: 1.24.3
* HDBSCAN: 0.8.29
* UMAP: 0.5.3
* Pandas: 2.0.1
* Scikit-Learn: 1.2.2
* Sentence-transformers: 2.2.2
* Transformers: 4.29.2
* Numba: 0.57.0
* Plotly: 5.14.1
* Python: 3.10.10
|