--- pipeline_tag: token-classification license: apache-2.0 tags: - generated_from_trainer datasets: - few_nerd metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: few_nerd type: few_nerd args: supervised metrics: - name: Precision type: precision value: 0.6424480067658478 - name: Recall type: recall value: 0.6854236732015421 - name: F1 type: f1 value: 0.6632404008334158 - name: Accuracy type: accuracy value: 0.9075199647113962 --- # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the few_nerd dataset. It achieves the following results on the evaluation set: - Loss: 0.3136 - Precision: 0.6424 - Recall: 0.6854 - F1: 0.6632 - Accuracy: 0.9075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.328 | 1.0 | 8236 | 0.3197 | 0.6274 | 0.6720 | 0.6489 | 0.9041 | | 0.2776 | 2.0 | 16472 | 0.3111 | 0.6433 | 0.6759 | 0.6592 | 0.9069 | | 0.241 | 3.0 | 24708 | 0.3136 | 0.6424 | 0.6854 | 0.6632 | 0.9075 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1