Upload Moondream
Browse files- config.json +1 -1
- configuration_moondream.py +0 -2
- generation_config.json +1 -1
- model.safetensors +1 -1
- modeling_phi.py +1 -24
- moondream.py +3 -0
config.json
CHANGED
@@ -11,5 +11,5 @@
|
|
11 |
"model_type": "phi"
|
12 |
},
|
13 |
"torch_dtype": "float16",
|
14 |
-
"transformers_version": "4.
|
15 |
}
|
|
|
11 |
"model_type": "phi"
|
12 |
},
|
13 |
"torch_dtype": "float16",
|
14 |
+
"transformers_version": "4.36.2"
|
15 |
}
|
configuration_moondream.py
CHANGED
@@ -25,7 +25,6 @@ class PhiConfig(PretrainedConfig):
|
|
25 |
rope_theta=10000.0,
|
26 |
rope_scaling=None,
|
27 |
partial_rotary_factor=0.5,
|
28 |
-
qk_layernorm=False,
|
29 |
bos_token_id=1,
|
30 |
eos_token_id=2,
|
31 |
**kwargs,
|
@@ -51,7 +50,6 @@ class PhiConfig(PretrainedConfig):
|
|
51 |
self.rope_theta = rope_theta
|
52 |
self.rope_scaling = rope_scaling
|
53 |
self.partial_rotary_factor = partial_rotary_factor
|
54 |
-
self.qk_layernorm = qk_layernorm
|
55 |
self._rope_scaling_validation()
|
56 |
|
57 |
super().__init__(
|
|
|
25 |
rope_theta=10000.0,
|
26 |
rope_scaling=None,
|
27 |
partial_rotary_factor=0.5,
|
|
|
28 |
bos_token_id=1,
|
29 |
eos_token_id=2,
|
30 |
**kwargs,
|
|
|
50 |
self.rope_theta = rope_theta
|
51 |
self.rope_scaling = rope_scaling
|
52 |
self.partial_rotary_factor = partial_rotary_factor
|
|
|
53 |
self._rope_scaling_validation()
|
54 |
|
55 |
super().__init__(
|
generation_config.json
CHANGED
@@ -2,5 +2,5 @@
|
|
2 |
"_from_model_config": true,
|
3 |
"bos_token_id": 1,
|
4 |
"eos_token_id": 2,
|
5 |
-
"transformers_version": "4.
|
6 |
}
|
|
|
2 |
"_from_model_config": true,
|
3 |
"bos_token_id": 1,
|
4 |
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.36.2"
|
6 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3733912224
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:927694193ed81f83b9b269c0d1ffa8dc823dec90bce4703a54b22ebd6c9632b6
|
3 |
size 3733912224
|
modeling_phi.py
CHANGED
@@ -16,14 +16,13 @@
|
|
16 |
""" PyTorch Phi model."""
|
17 |
|
18 |
|
19 |
-
import math
|
20 |
from typing import List, Optional, Tuple, Union
|
21 |
|
22 |
import torch
|
23 |
import torch.nn.functional as F
|
24 |
import torch.utils.checkpoint
|
25 |
from torch import nn
|
26 |
-
from torch.nn import
|
27 |
|
28 |
from transformers.activations import ACT2FN
|
29 |
from transformers.cache_utils import Cache, DynamicCache
|
@@ -31,7 +30,6 @@ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_m
|
|
31 |
from transformers.modeling_outputs import (
|
32 |
BaseModelOutputWithPast,
|
33 |
CausalLMOutputWithPast,
|
34 |
-
SequenceClassifierOutputWithPast,
|
35 |
)
|
36 |
from transformers.modeling_utils import PreTrainedModel
|
37 |
from transformers.utils import (
|
@@ -287,19 +285,6 @@ class PhiAttention(nn.Module):
|
|
287 |
self.num_heads * self.head_dim, self.hidden_size, bias=True
|
288 |
)
|
289 |
|
290 |
-
self.qk_layernorm = config.qk_layernorm
|
291 |
-
if self.qk_layernorm:
|
292 |
-
self.q_layernorm = nn.LayerNorm(
|
293 |
-
config.hidden_size // self.num_heads,
|
294 |
-
eps=config.layer_norm_eps,
|
295 |
-
elementwise_affine=True,
|
296 |
-
)
|
297 |
-
self.k_layernorm = nn.LayerNorm(
|
298 |
-
config.hidden_size // self.num_heads,
|
299 |
-
eps=config.layer_norm_eps,
|
300 |
-
elementwise_affine=True,
|
301 |
-
)
|
302 |
-
|
303 |
self._init_rope()
|
304 |
|
305 |
def _init_rope(self):
|
@@ -344,10 +329,6 @@ class PhiAttention(nn.Module):
|
|
344 |
3, dim=-1
|
345 |
)
|
346 |
|
347 |
-
if self.qk_layernorm:
|
348 |
-
query_states = self.q_layernorm(query_states)
|
349 |
-
key_states = self.k_layernorm(key_states)
|
350 |
-
|
351 |
query_states = query_states.view(
|
352 |
bsz, q_len, self.num_heads, self.head_dim
|
353 |
).transpose(1, 2)
|
@@ -451,10 +432,6 @@ class PhiFlashAttention2(PhiAttention):
|
|
451 |
3, dim=-1
|
452 |
)
|
453 |
|
454 |
-
if self.qk_layernorm:
|
455 |
-
query_states = self.q_layernorm(query_states)
|
456 |
-
key_states = self.k_layernorm(key_states)
|
457 |
-
|
458 |
# Flash attention requires the input to have the shape
|
459 |
# batch_size x seq_length x head_dim x hidden_dim
|
460 |
# therefore we just need to keep the original shape
|
|
|
16 |
""" PyTorch Phi model."""
|
17 |
|
18 |
|
|
|
19 |
from typing import List, Optional, Tuple, Union
|
20 |
|
21 |
import torch
|
22 |
import torch.nn.functional as F
|
23 |
import torch.utils.checkpoint
|
24 |
from torch import nn
|
25 |
+
from torch.nn import CrossEntropyLoss
|
26 |
|
27 |
from transformers.activations import ACT2FN
|
28 |
from transformers.cache_utils import Cache, DynamicCache
|
|
|
30 |
from transformers.modeling_outputs import (
|
31 |
BaseModelOutputWithPast,
|
32 |
CausalLMOutputWithPast,
|
|
|
33 |
)
|
34 |
from transformers.modeling_utils import PreTrainedModel
|
35 |
from transformers.utils import (
|
|
|
285 |
self.num_heads * self.head_dim, self.hidden_size, bias=True
|
286 |
)
|
287 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
self._init_rope()
|
289 |
|
290 |
def _init_rope(self):
|
|
|
329 |
3, dim=-1
|
330 |
)
|
331 |
|
|
|
|
|
|
|
|
|
332 |
query_states = query_states.view(
|
333 |
bsz, q_len, self.num_heads, self.head_dim
|
334 |
).transpose(1, 2)
|
|
|
432 |
3, dim=-1
|
433 |
)
|
434 |
|
|
|
|
|
|
|
|
|
435 |
# Flash attention requires the input to have the shape
|
436 |
# batch_size x seq_length x head_dim x hidden_dim
|
437 |
# therefore we just need to keep the original shape
|
moondream.py
CHANGED
@@ -59,6 +59,9 @@ class Moondream(PreTrainedModel):
|
|
59 |
|
60 |
return torch.cat(embeds, dim=1)
|
61 |
|
|
|
|
|
|
|
62 |
def generate(
|
63 |
self,
|
64 |
image_embeds,
|
|
|
59 |
|
60 |
return torch.cat(embeds, dim=1)
|
61 |
|
62 |
+
def get_input_embeddings(self):
|
63 |
+
return self.text_model.get_input_embeddings()
|
64 |
+
|
65 |
def generate(
|
66 |
self,
|
67 |
image_embeds,
|