File size: 56,975 Bytes
56df21f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 |
import math
from copy import deepcopy
from dataclasses import fields, dataclass, replace
from enum import Enum
from typing import List, Optional, Tuple, Union, Dict, Any, Sequence, Callable, cast, MutableMapping
import torch
from transformers import PreTrainedModel, GenerationConfig, add_start_docstrings
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache
from transformers.modeling_flash_attention_utils import _flash_attention_forward
from transformers.modeling_outputs import CausalLMOutputWithPast, ModelOutput
from transformers.models.auto import AutoModelForCausalLM
from torch import nn
from transformers.utils import logging
from .config_molmo import MolmoConfig, MolmoVisionConfig
from torch.nn import functional as F
logger = logging.get_logger(__name__)
MOLMO_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MolmoConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Molmo Model outputting raw hidden-states without any specific head on top.",
MOLMO_START_DOCSTRING,
)
class MolmoPreTrainedModel(PreTrainedModel):
config_class = MolmoConfig
base_model_prefix = "model"
_no_split_modules = ["MolmoBlock", "MolmoeBlock", "MolmoVisionBlock"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
# supports_gradient_checkpointing = True
# _supports_cache_class = True
# _supports_static_cache = False
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear,)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
class MolmoRotaryEmbedding(nn.Module):
"""
[Rotary positional embeddings (RoPE)](https://arxiv.org/abs/2104.09864).
"""
def __init__(self, dim, max_position_embeddings=2048, rope_theta=10000, full_precision=True, device=None):
super().__init__()
self.dim = dim
self.rope_theta = rope_theta
self.full_precision = full_precision
self.max_position_embeddings = max_position_embeddings
# Cache sin/cos embeddings
dim = self.dim
inv_freq = 1.0 / (self.rope_theta ** (torch.arange(0, dim, 2, device=device, dtype=torch.float) / dim))
seq = torch.arange(self.max_position_embeddings, device=device, dtype=torch.float)
freqs = torch.einsum("i , j -> i j", seq, inv_freq)
positions = torch.cat((freqs, freqs), dim=-1)
pos_sin, pos_cos = positions.sin()[None, None, :, :], positions.cos()[None, None, :, :]
self.register_buffer("rope_pos_sin", pos_sin, persistent=False)
self.register_buffer("rope_pos_cos", pos_cos, persistent=False)
def rotate_half(self, x: torch.Tensor) -> torch.Tensor:
B, nh, T, hs = x.size()
x = x.view(B, nh, T, 2, hs // 2)
x1, x2 = x.unbind(dim=-2)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(self, pos_sin: torch.Tensor, pos_cos: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
return (t * pos_cos) + (self.rotate_half(t) * pos_sin)
def forward(
self,
q: torch.Tensor,
k: torch.Tensor,
position_ids: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
if self.full_precision:
q_, k_ = q.float(), k.float()
else:
q_, k_ = q, k
with torch.autocast(q.device.type, enabled=False):
batch_size = q_.shape[0]
query_len, key_len = q_.shape[-2], k_.shape[-2] # could be different if layer_past not None
if position_ids is not None:
freqs_cis_len = self.max_position_embeddings
else:
freqs_cis_len = key_len
# self.get_rotary_embedding(freqs_cis_len, q_.device)
pos_sin = self.rope_pos_sin[:, :, :freqs_cis_len, :].type_as(q_)
pos_cos = self.rope_pos_cos[:, :, :freqs_cis_len, :].type_as(q_)
if position_ids is not None:
assert query_len == key_len, "Query and key lengths must be equal when using position IDs."
pos_sin = pos_sin[0, 0][position_ids].view(
(batch_size, 1, key_len, pos_sin.shape[-1])
)
pos_cos = pos_cos[0, 0][position_ids].view(
(batch_size, 1, key_len, pos_cos.shape[-1])
)
q_ = self.apply_rotary_pos_emb(
pos_sin[:, :, key_len - query_len : key_len, :],
pos_cos[:, :, key_len - query_len : key_len, :],
q_,
)
k_ = self.apply_rotary_pos_emb(pos_sin, pos_cos, k_)
return q_.type_as(q), k_.type_as(k)
class MolmoAttention(nn.Module):
def __init__(
self,
config: MolmoConfig,
device=None
):
super().__init__()
self.config = config
self.rotary_emb = MolmoRotaryEmbedding(
config.hidden_size // config.num_attention_heads,
config.max_position_embeddings,
config.rope_theta, device=device)
self.k_norm: Optional[nn.Module] = None
self.q_norm: Optional[nn.Module] = None
self.hidden_size = config.intermediate_size
if config.qk_layer_norm:
if config.num_key_value_heads is None:
config.num_key_value_heads = config.num_attention_heads
self.q_norm = MolmoRmsLayerNorm(
config,
size=config.hidden_size,
eps=config.layer_norm_eps
)
self.k_norm = MolmoRmsLayerNorm(
config,
size=config.hidden_size,
eps=config.layer_norm_eps
)
# Attention output projection.
input_dim = config.hidden_size
head_dim = config.hidden_size // config.num_attention_heads
self.fused_dims = (
config.hidden_size,
config.num_key_value_heads * head_dim,
config.num_key_value_heads * head_dim,
)
self.att_proj = nn.Linear(
config.hidden_size, sum(self.fused_dims),
bias=config.qkv_bias,
)
self.attn_out = nn.Linear(
input_dim, config.hidden_size,
bias=False,
)
def attention(self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
drop_mask: Optional[torch.Tensor] = None,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
B, T, C = q.size() # batch size, sequence length, hidden_size
dtype = k.dtype
# Optionally apply layer norm to keys and queries.
if self.q_norm is not None and self.k_norm is not None:
q = self.q_norm(q).to(dtype=dtype)
k = self.k_norm(k).to(dtype=dtype)
# Move head forward to be next to the batch dim.
# shape: (B, nh, T, hs)
q = q.view(B, T, self.config.num_attention_heads, C // self.config.num_attention_heads).transpose(1, 2)
# shape: (B, n_kv_h, T, hs)
k = k.view(B, T, self.config.num_key_value_heads, C // self.config.num_attention_heads).transpose(1, 2)
# shape: (B, n_kv_h, T, hs)
v = v.view(B, T, self.config.num_key_value_heads, C // self.config.num_attention_heads).transpose(1, 2)
# Apply rotary embeddings
q, k = self.rotary_emb(q, k, position_ids=position_ids)
if layer_past is not None:
past_key, past_value = layer_past
k = torch.cat((past_key.to(k.device), k), dim=-2)
v = torch.cat((past_value.to(v.device), v), dim=-2)
present = (k, v) if use_cache else None
query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None
if attention_mask is not None:
attention_mask = attention_mask[:, :, key_len - query_len: key_len, :key_len]
# if attention_bias is not None:
# attention_bias = self._cast_attn_bias(
# attention_bias[:, :, key_len - query_len : key_len, :key_len], dtype)
# Get the attention scores.
# shape: (B, nh, T, hs)
att = self._scaled_dot_product_attention(
q,
k,
v,
attention_mask=attention_mask,
dropout_p=0.0 if not self.training else self.config.attention_dropout,
is_causal=attention_mask is None,
)
# Re-assemble all head outputs side-by-side.
att = att.transpose(1, 2).contiguous().view(B, T, C)
# Apply output projection.
return self.attn_out(att), present
def _scaled_dot_product_attention(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
) -> torch.Tensor:
if attention_mask is not None:
attention_mask = attention_mask.to(q.device)
if self.config.attention_type == "sdpa":
assert k.size(1) == v.size(1)
num_kv_heads = k.size(1)
num_q_heads = q.size(1)
if num_q_heads != num_kv_heads:
assert num_q_heads % num_kv_heads == 0
k = k.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
v = v.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
return F.scaled_dot_product_attention(
q,
k,
v,
attn_mask=attention_mask,
dropout_p=dropout_p,
is_causal=is_causal,
)
elif self.config.attention_type == "flash":
# Downcast in case we are running with fp32 hidden states
# Our attention mask is [1, 1, N, N]
valid_mask = torch.reduce_any(attention_mask, -1)[0]
attn_output = _flash_attention_forward(
q.transpose(1, 2).to(torch.bfloat16),
k.transpose(1, 2).to(torch.bfloat16),
v.transpose(1, 2).to(torch.bfloat16),
attention_mask=valid_mask,
query_length=q.shape[2],
is_causal=True,
)
else:
raise NotImplementedError(self.config.attention_type)
def forward(
self,
x,
attention_mask,
position_ids,
layer_past,
use_cache
):
qkv = self.att_proj(x)
q, k, v = qkv.split(self.fused_dims, dim=-1)
# Get attention scores.
att, cache = self.attention(
q, k, v,
attention_mask,
position_ids=position_ids,
layer_past=layer_past,
use_cache=use_cache
)
return att, cache
class MolmoMlp(nn.Module):
def __init__(self, input_dim, hidden_size, activation_fn, include_bias=False):
super().__init__()
self.ff_proj = nn.Linear(input_dim, hidden_size, bias=include_bias)
self.ff_out = nn.Linear(hidden_size//2, input_dim, bias=include_bias)
self.act = ACT2FN[activation_fn]
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
x = self.ff_proj(x)
x, gate = x.chunk(2, dim=-1)
x = self.act(gate) * x
x = self.ff_out(x)
return x
class MolmoBlock(nn.Module):
def __init__(self, config: MolmoConfig, device=None):
super().__init__()
self.config = config
self.hidden_size = config.intermediate_size
self.dropout = nn.Dropout(config.residual_dropout)
self.attn = MolmoAttention(config)
self.attn_norm = MolmoRmsLayerNorm(config, size=config.hidden_size, eps=config.layer_norm_eps)
self.mlp = MolmoMlp(config.hidden_size, config.intermediate_size, config.activation_type)
self.ff_norm = MolmoRmsLayerNorm(config)
def forward(
self,
x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
if not self.config.norm_after:
atten_in = self.attn_norm(x)
else:
atten_in = x
att, cache = self.attn(
atten_in,
attention_mask=attention_mask,
position_ids=position_ids,
layer_past=layer_past,
use_cache=use_cache
)
if self.config.norm_after:
att = self.attn_norm(att)
x = x + self.dropout(att)
og_x = x
if not self.config.norm_after:
x = self.ff_norm(x)
x = self.mlp(x)
if self.config.norm_after:
x = self.ff_norm(x)
x = self.dropout(x)
x = og_x + x
return x, cache
class MolmoeMLP(nn.Module):
def __init__(self, input_dim, hidden_size, activation):
super().__init__()
self.gate_proj = nn.Linear(input_dim, hidden_size, bias=False)
self.up_proj = nn.Linear(input_dim, hidden_size, bias=False)
self.down_proj = nn.Linear(hidden_size, input_dim, bias=False)
self.act_fn = ACT2FN[activation]
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class MolmoeMlpExpert(nn.Module):
def __init__(self, config):
super().__init__()
self.num_experts = config.moe_num_experts
self.top_k = config.moe_top_k
self.gate = nn.Linear(config.hidden_size, self.num_experts, bias=False)
self.experts = nn.ModuleList([MolmoeMLP(config.hidden_size, config.intermediate_size // 2, config.activation_type)
for _ in range(self.num_experts)])
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# hidden_states = self.ff_norm(hidden_states)
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be selected
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
class MolmoeBlock(nn.Module):
def __init__(self, config: MolmoConfig):
super().__init__()
self.attn = MolmoAttention(config)
self.attn_norm = MolmoRmsLayerNorm(config, size=config.hidden_size, eps=config.layer_norm_eps)
assert config.moe_num_experts > 0
self.ff_norm = MolmoRmsLayerNorm(config, size=config.hidden_size, eps=config.layer_norm_eps)
self.mlp = MolmoeMlpExpert(config)
self.config = config
self.hidden_size = config.intermediate_size
self.dropout = nn.Dropout(config.residual_dropout)
def forward(
self,
x: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.Tensor] = None,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
if not self.config.norm_after:
atten_in = self.attn_norm(x)
else:
atten_in = x
att, cache = self.attn(
atten_in,
attention_mask=attention_mask,
position_ids=position_ids,
layer_past=layer_past,
use_cache=use_cache
)
if self.config.norm_after:
att = self.attn_norm(att)
x = x + self.dropout(att)
og_x = x
if not self.config.norm_after:
x = self.ff_norm(x)
x, _ = self.mlp(x)
if self.config.norm_after:
x = self.ff_norm(x)
x = self.dropout(x)
x = og_x + x
return x, cache
class Embedding(nn.Module):
def __init__(
self,
num_embeddings: int,
num_new_embeddings: int,
features: int,
device: Union[str, torch.device] = None,
initializer_range: float = 0.02,
new_embed_initializer_range: float = 0.02,
):
super().__init__()
self.initializer_range = initializer_range
self.new_embed_initializer_range = new_embed_initializer_range
self.embedding = nn.Parameter(
torch.zeros(num_embeddings, features, device=device),
)
# We keep the special token embedding separate from the embedding from the LM so we can
# put a separate learning rate of them during training
self.new_embedding = nn.Parameter(torch.zeros(num_new_embeddings, features, device=device))
def reset_parameters(self):
nn.init.normal_(self.embedding, std=self.initializer_range)
nn.init.normal_(self.new_embedding, std=self.new_embed_initializer_range)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return F.embedding(x, torch.cat([self.embedding, self.new_embedding], dim=0))
def _expand_token(token, batch_size: int):
return token.view(1, 1, -1).expand(batch_size, -1, -1)
class VisionMlp(nn.Module):
def __init__(self, dim: int, hidden_dim: int, hidden_act: str, device=None):
super().__init__()
self.w1 = nn.Linear(dim, hidden_dim, bias=True, device=device)
self.act = ACT2FN[hidden_act]
self.w2 = nn.Linear(hidden_dim, dim, bias=True, device=device)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.w2(self.act(self.w1(x)))
class MolmoVisionBlock(nn.Module):
def __init__(self, config: MolmoVisionConfig, attention_type, device=None):
super().__init__()
self.attention = VisionAttention(config, device=device, attention_type=attention_type)
self.feed_forward = VisionMlp(
config.image_emb_dim, config.image_mlp_dim, config.image_mlp_activations, device)
self.attention_norm = nn.LayerNorm(
config.image_emb_dim,
eps=config.image_norm_eps,
device=device,
)
self.ffn_norm = nn.LayerNorm(
config.image_emb_dim,
eps=config.image_norm_eps,
device=device,
)
def reset_parameters(self):
self.attention.reset_parameters()
self.feed_forward.reset_parameters()
self.attention_norm.reset_parameters()
self.ffn_norm.reset_parameters()
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x + self.attention(self.attention_norm(x))
x = x + self.feed_forward(self.ffn_norm(x))
return x
class VisionPreLayerNorm(nn.LayerNorm):
def forward(self, x: torch.Tensor) -> torch.Tensor:
orig_type = x.dtype
x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight.to(torch.float32),
self.bias.to(torch.float32), self.eps)
return x.to(orig_type)
class VisionTransformer(nn.Module):
def __init__(self, config: MolmoVisionConfig, attention_type, device=None):
super().__init__()
self.config = config
# class embeddings and positional embeddings
self.scale = config.image_emb_dim ** -0.5
self.class_embedding = nn.Parameter(
torch.zeros(config.image_emb_dim, device=device))
self.positional_embedding = nn.Parameter(
torch.zeros(config.image_num_pos, config.image_emb_dim, device=device))
image_patch_size = config.image_patch_size
self.patch_embedding = nn.Linear(
image_patch_size * image_patch_size * 3,
config.image_emb_dim,
bias=False,
device=device
)
self.pre_ln = VisionPreLayerNorm(
config.image_emb_dim,
eps=config.image_norm_eps,
)
self.blocks = nn.ModuleList([
MolmoVisionBlock(config, attention_type=attention_type, device=device)
for _ in range(config.image_num_layers)
])
def add_pos_emb(self, x: torch.Tensor, patch_num: int) -> torch.Tensor:
cls_emb = self.positional_embedding[0:1]
pos_emb = self.positional_embedding[1:]
pos_emb = pos_emb.reshape(
(int(math.sqrt(pos_emb.shape[0])), int(math.sqrt(pos_emb.shape[0])), pos_emb.shape[1])
)
(patch_num_0, patch_num_1) = patch_num
if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1:
# Dervied from https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
# antialias: default True in jax.image.resize
pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2)
pos_emb = F.interpolate(
pos_emb, size=(patch_num_0, patch_num_1), mode="bicubic", align_corners=False, antialias=True,
)
pos_emb = pos_emb.permute(0, 2, 3, 1).squeeze(0)
pos_emb = pos_emb.reshape(-1, pos_emb.shape[-1])
x = x + torch.cat([cls_emb[None, :, :], pos_emb[None, :, :]], dim=1).to(x.dtype)
return x
def forward(self, x: torch.Tensor, patch_num: int = None) -> List[torch.Tensor]:
if patch_num is None:
patch_num = self.config.image_num_patch
B, N, D = x.shape
x = self.patch_embedding(x)
# class embeddings and positional embeddings
x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1)
x = self.add_pos_emb(x, patch_num)
x = self.pre_ln(x)
hidden_states = []
for r in self.blocks:
x = r(x)
hidden_states.append(x)
return hidden_states
class VisionAttention(nn.Module):
def __init__(self, config: MolmoVisionConfig, use_bias: bool =True,
embed_dim: int=None, device=None, attention_type: str="sdpa"):
super().__init__()
self.config = config
self.embed_dim = config.image_emb_dim
self.num_heads = config.image_num_heads
self.head_dim = config.image_head_dim
self.num_key_value_heads = config.image_num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.initializer_range = config.initializer_range
self.attention_type = attention_type
embed_dim = embed_dim if embed_dim else config.image_emb_dim
self.wq = nn.Linear(
embed_dim,
self.num_heads * self.head_dim,
bias=use_bias,
device=device,
)
self.wk = nn.Linear(
embed_dim,
self.num_key_value_heads * self.head_dim,
bias=use_bias,
device=device,
)
self.wv = nn.Linear(
embed_dim,
self.num_key_value_heads * self.head_dim,
bias=use_bias,
device=device,
)
self.wo = nn.Linear(
self.num_heads * self.head_dim,
self.embed_dim,
bias=use_bias,
device=device,
)
self.residual_dropout = nn.Dropout(config.residual_dropout)
def _split_heads(self, hidden_states, num_heads) -> torch.Tensor:
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))
def _merge_heads(self, hidden_states) -> torch.Tensor:
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
def forward(self, inputs_q: torch.Tensor, inputs_kv: Optional[torch.Tensor] = None) -> torch.Tensor:
if inputs_kv is not None:
inputs_k = inputs_kv
inputs_v = inputs_kv
else:
inputs_k = inputs_q
inputs_v = inputs_q
xq, xk, xv = self.wq(inputs_q), self.wk(inputs_k), self.wv(inputs_v)
xq = self._split_heads(xq, self.num_heads)
xk = self._split_heads(xk, self.num_key_value_heads)
xv = self._split_heads(xv, self.num_key_value_heads)
if self.num_heads != self.num_key_value_heads:
xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
og_dtype = xq.dtype
if self.config.float32_attention:
xq = xq.to(torch.float)
xk = xk.to(torch.float)
if self.attention_type == "direct":
attn_weights = torch.einsum("...qhd,...khd->...hqk", xq / math.sqrt(xq.size(-1)), xk)
attn_weights = F.softmax(attn_weights, dim=-1)
attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights.to(xv.dtype), xv)
elif self.attention_type == "sdpa":
if self.config.float32_attention and not torch.is_autocast_enabled():
xv = xv.to(torch.float32)
attn_output = F.scaled_dot_product_attention(
xq.transpose(1, 2).contiguous(),
xk.transpose(1, 2).contiguous(),
xv.transpose(1, 2).contiguous(),
is_causal=False,
).transpose(1, 2)
elif self.attention_type == "flash":
assert not self.config.float32_attention
# Downcast in case we are running with fp32 hidden states
attn_output = _flash_attention_forward(
xq.transpose(1, 2).to(torch.bfloat16),
xk.transpose(1, 2).to(torch.bfloat16),
xv.transpose(1, 2).to(torch.bfloat16),
attention_mask=None,
query_length=inputs_q.shape[1],
is_causal=False,
)
else:
raise NotImplementedError(self.attention_type)
attn_output = attn_output.to(og_dtype)
attn_output = self._merge_heads(attn_output)
attn_output = self.wo(attn_output)
attn_output = self.residual_dropout(attn_output)
return attn_output
class MolmoImageProjector(nn.Module):
def __init__(self, input_dim: int, hidden_dim, output_dim, act_fn="silu", device=None):
super().__init__()
self.w1 = nn.Linear(input_dim, hidden_dim, bias=False, device=device)
self.w2 = nn.Linear(hidden_dim, output_dim, bias=False, device=device)
self.w3 = nn.Linear(input_dim, hidden_dim, bias=False, device=device)
self.act_fn = ACT2FN[act_fn]
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.w2(self.act_fn(self.w1(x))*self.w3(x))
class OLMoVisionBackbone(nn.Module):
def __init__(self, config: MolmoConfig):
super().__init__()
self.config = config
self.image_vit = VisionTransformer(config.vision_config, config.attention_type)
self.image_pooling_2d = VisionAttention(
config.vision_config,
embed_dim=len(config.vit_layers)*config.vision_config.image_emb_dim,
attention_type=config.attention_type
)
# `MLP` assume the activation takes two inputs, so it must be a 'llama' version
if config.activation_type == "swiglu":
mlp_config = replace(config, activation_type="llama_swiglu")
elif config.activation_type == "gelu":
raise NotImplementedError()
else:
mlp_config = config
self.image_projector = MolmoImageProjector(
config.vision_config.image_emb_dim,
config.intermediate_size//2, # //2 since `mlp_hidden_size` includes the gate and parts
config.hidden_size,
act_fn=config.activation_type
)
self.image_feature_dropout = nn.Dropout(config.image_feature_dropout)
self.num_prefix_tokens = 1
self.pad_embed = None
if config.image_padding_embed:
image_dim = config.vision_config.image_emb_dim*len(self.config.vit_layers)
if config.image_padding_embed == "pad_and_partial_pad":
self.pad_embed = nn.Parameter(torch.zeros((2, image_dim)))
else:
raise ValueError(config.image_padding_embed)
def encode_image(self, images: torch.Tensor) -> torch.Tensor:
cfg = self.config
v_cfg = self.config.vision_config
B, T, N, D = images.shape
mask = ~torch.all(images.view(B * T, N, D) == -1, dim=(1, 2), keepdim=True)
# Output all hidden states
# n_layers x (batch_num_crops, (1+)n_tokens, image_emb_dim)
images = images.view(B * T, N, D)
image_features = self.image_vit(images)
if cfg.vit_layers is not None:
features = []
for layer in cfg.vit_layers:
features.append(image_features[layer])
image_features = torch.cat(features, dim=-1)
else:
image_features = image_features[-1]
cls_embed: torch.Tensor = None
if self.num_prefix_tokens > 0:
cls_embed = image_features[:, 0]
image_features = image_features[:, 1:]
image_features = image_features * mask
image_features = image_features.view(B, T, N, -1)
cls_embed = cls_embed.view(B, T, -1) if cls_embed is not None else None
return image_features, cls_embed
def forward(self, images: torch.Tensor, image_masks: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
cfg = self.config
# image_features: (batch_size, num_crops(=num_image), num_patch, nximage_emb_dim)
batch_size, num_image = images.shape[:2]
image_features, cls_embed = self.encode_image(images)
if cfg.image_padding_embed:
assert image_masks is not None
if cfg.image_padding_embed == "pad_embed":
all_pad = (image_masks == 0).to(dtype=torch.float32)
pad_embed = self.pad_embed[None, None, None, :]
image_features = image_features + pad_embed * torch.unsqueeze(all_pad, -1)
elif cfg.image_padding_embed == "regress":
pad_embed = self.pad_embed[None, None, None, :]
image_features = image_features + pad_embed * torch.unsqueeze(torch.maximum(image_masks, torch.zeros_like(image_masks)), -1)
elif cfg.image_padding_embed == "pad_and_partial_pad":
pad_embed = self.pad_embed[:, None, None, None, :]
all_pad = image_masks == 0
partial_pad = torch.logical_and(image_masks < 1, torch.logical_not(all_pad)).to(dtype=image_features.dtype)
all_pad = all_pad.to(dtype=image_features.dtype)
image_features = image_features + pad_embed[0] * torch.unsqueeze(all_pad, -1)
image_features = image_features + pad_embed[1] * torch.unsqueeze(partial_pad, -1)
else:
raise ValueError(cfg.image_padding_embed)
image_features = self.image_feature_dropout(image_features)
if cls_embed is not None:
cls_embed = self.image_feature_dropout(cls_embed)
image_features = image_features.reshape(
(batch_size, num_image) + cfg.image_num_patch + (-1,))
# transpose to get 2x2 feature squares [n_patches, 4, n_features]
batch, n_crops, h, w, c = image_features.shape
image_features = torch.reshape(image_features, [batch*n_crops, h//2, 2, w//2, 2, c])
image_features = torch.permute(image_features, [0, 1, 3, 2, 4, 5])
image_features = torch.reshape(image_features, [batch*n_crops*h//2*w//2, 2*2, c])
query = image_features.mean(-2, keepdim=True)
image_features = self.image_pooling_2d(query, image_features)
h = self.config.vision_config.image_num_patch[0]//2
w = self.config.vision_config.image_num_patch[1]//2
image_features = image_features.reshape(batch_size, num_image, h * w, -1)
# MLP layer to map the feature.
image_features = self.image_projector(image_features)
# image_features: (batch_size, num_image, num_patch, hidden_size)
# cls_embed: (batch_size, num_image, hidden_size)
return image_features, cls_embed
def causal_attention_bias(seq_len: int, device: torch.device) -> torch.FloatTensor:
att_bias = torch.triu(
torch.ones(seq_len, seq_len, device=device, dtype=torch.float),
diagonal=1,
)
att_bias.masked_fill_(att_bias == 1, torch.finfo(att_bias.dtype).min)
return att_bias.view(1, 1, seq_len, seq_len) # type: ignore
class MolmoRmsLayerNorm(nn.Module):
"""
RMS layer norm, a simplified :class:`LayerNorm` implementation
"""
def __init__(
self,
config: MolmoConfig,
size: Optional[int] = None,
elementwise_affine: Optional[bool] = None,
eps: float = 1e-5,
):
super().__init__()
self.config = config
self.eps = self.config.layer_norm_eps or eps
self.normalized_shape = (size or config.hidden_size,)
if elementwise_affine or (elementwise_affine is None):
self.weight = nn.Parameter(torch.ones(self.normalized_shape))
use_bias = self.config.bias_for_layer_norm
if use_bias:
self.bias = nn.Parameter(torch.zeros(self.normalized_shape))
else:
self.register_parameter("bias", None)
else:
self.register_parameter("bias", None)
self.register_parameter("weight", None)
def forward(self, x: torch.Tensor) -> torch.Tensor:
with torch.autocast(enabled=False, device_type=x.device.type):
og_dtype = x.dtype
x = x.to(torch.float32)
variance = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(variance + self.eps)
x = x.to(og_dtype)
if self.weight is not None:
if self.bias is not None:
return self.weight * x + self.bias
else:
return self.weight * x
else:
return x
class MolmoModel(MolmoPreTrainedModel):
def __init__(self, config: MolmoConfig, init_params: bool = True):
super().__init__(config)
if self.config.additional_vocab_size is not None:
wte = Embedding(
config.vocab_size,
config.additional_vocab_size,
config.hidden_size,
)
else:
wte = nn.Embedding(config.vocab_size, config.hidden_size)
self.transformer = nn.ModuleDict(
dict(
wte=wte,
emb_drop=nn.Dropout(config.embedding_dropout),
ln_f=MolmoRmsLayerNorm(config),
)
)
if config.moe_num_experts > 0:
blocks = [MolmoeBlock(config) for i in range(config.num_hidden_layers)]
else:
blocks = [MolmoBlock(config) for i in range(config.num_hidden_layers)]
self.transformer.update({"blocks": nn.ModuleList(blocks)})
if not config.weight_tying:
self.transformer.update(
{
"ff_out": nn.Linear(
config.hidden_size,
config.vocab_size,
bias=False,
)
}
)
self.vision_backbone: Optional[OLMoVisionBackbone] = None
if config.vision_config is not None:
self.vision_backbone = OLMoVisionBackbone(config)
def reset_parameters(self):
if self.vision_backbone is not None:
self.vision_backbone.reset_parameters()
self.reset_non_vision_parameters()
def reset_non_vision_parameters(self):
self.transformer.wte.reset_parameters()
if hasattr(self.transformer.wte, "new_embedding"):
nn.init.normal_(self.transformer.wte.new_embedding, std=self.config.new_embedding_init_range)
if hasattr(self.transformer, "wpe"):
nn.init.normal_(self.transformer.wpe, mean=0.0, std=1.0)
self.transformer.ln_f.reset_parameters() # type: ignore
if hasattr(self.transformer, "ff_out"):
nn.init.normal_(self.transformer.ff_out, mean=0.0, std=0.02)
for block in self.transformer.blocks:
block.reset_parameters()
def forward(
self,
input_ids: torch.LongTensor,
input_embeddings: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
image_masks: Optional[torch.Tensor] = None,
image_input_idx: Optional[torch.Tensor] = None,
subsegment_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[Sequence[Tuple[torch.Tensor, torch.Tensor]]] = None,
use_cache: bool = False,
last_logits_only: bool = False,
output_hidden_states: Optional[bool] = None,
append_last_valid_logits: Optional[torch.Tensor] = None,
) -> ModelOutput:
"""
:param input_ids: A tensor of shape `(batch_size, seq_len)`.
:param input_embeddings: A tensor of shape `(batch_size, seq_len, hidden_size)` with input
embeddings. When provided, it is treated as the output of the input embedding layer.
:param attention_mask: A tensor of shape `(batch_size, seq_len)` that indicates
which input IDs are masked. A `1` value in the mask means that
the corresponding input ID should *not* be ignored. A `0` means
that the corresponding input ID is masked.
This has the same meaning as the `attention_mask` in HuggingFace's `transformers`
library.
:param attention_bias: A tensor of shape `(batch_size, 1, seq_len, seq_len)`,
`(1, 1, seq_len, seq_len)`, or `(seq_len, seq_len)`. This is used
to introduce causal or other biases.
If the tensor is a bool or byte tensor, a `True` or `1` at `attention_bias[:, :, i, j]`
indicates that the i-th element in the sequence is allowed to attend to the j-th
element in the sequence.
If the tensor is a float tensor, it will just be added to the attention
scores before the softmax.
The default is causal, which corresponds to a lower-diagonal byte matrix of ones.
:param response_mask: A tensor of shape `(batch_size, seq_len)` that indicates
the response mask. A `1` value in the mask means that the corresponding token
is a response token. A `0` means that the corresponding token is not
a response token.
:param past_key_values: Pre-computed keys and values for each attention block.
Can be used to speed up sequential decoding. The `input_ids` which have
their past given to this model should not be passed as `input_ids` as they have already been computed.
:param use_cache: If `True`, return key and value tensors for each block.
:param last_logits_only: If `True`, only compute the logits for the last token of each sequence.
This can speed up decoding when you only care about the next token.
"""
output_hidden_states = output_hidden_states if output_hidden_states is not None else False
if past_key_values:
assert len(past_key_values) == self.config.num_hidden_layers
has_image = images is not None
assert not (has_image and input_embeddings is not None), "Cannot provide both images and input embeddings."
assert not (has_image and past_key_values is not None), "Cached key and values should not be used with images."
batch_size, seq_len = input_ids.size() if input_embeddings is None else input_embeddings.size()[:2]
if past_key_values is None:
past_length = 0
else:
past_length = past_key_values[0][0].size(-2)
if attention_mask is None:
attention_mask = input_ids != -1
if subsegment_ids is not None:
raise NotImplementedError()
else:
if position_ids is None:
position_ids = torch.clamp(
torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1,
min=0,
).broadcast_to((batch_size, attention_mask.shape[-1]))
# Get embeddings of input.
# shape: (batch_size, seq_len, hidden_size)
if input_ids is not None:
input_ids = input_ids * (input_ids != -1).to(input_ids.dtype)
x = self.transformer.wte(input_ids) if input_embeddings is None else input_embeddings # type: ignore
num_image: Optional[int] = None
if images is not None:
# shape: (batch_size, num_image, num_patch, hidden_size)
# cls_embed: (batch_size, num_image, hidden_size)
image_features, cls_embed = self.vision_backbone(images, image_masks)
num_image, num_patch = image_features.shape[1:3]
assert image_input_idx.shape == (batch_size, num_image, num_patch)
# inster the image feature into the embedding.
image_features = image_features.view(batch_size, num_image * num_patch, -1)
image_input_idx = image_input_idx.view(batch_size, num_image * num_patch)
valid = image_input_idx >= 0
batch_idx = torch.arange(batch_size, device=x.device)
batch_idx = torch.tile(batch_idx[:, None], [1, image_features.shape[1]])
# For hf demo/endpoint
image_features = image_features.to(x.device)
x[batch_idx[valid], image_input_idx[valid]] += image_features[valid]
# Add input + positional embeddings and apply dropout.
# shape: (batch_size, seq_len, hidden_size)
x = self.transformer.emb_drop(x) # type: ignore
# normalized
if self.config.normalize_input_embeds:
x = x * (self.config.hidden_size ** 0.5)
# Merge attention mask with attention bias.
# FIXME we are ignoring the attention mask input parameter
if self.config.attention_type == "flash":
attention_mask = input_ids != -1
elif (
attention_mask is not None
or past_key_values is not None
):
total_len = (past_length + seq_len)
attention_mask = torch.tril(torch.ones(total_len, total_len, device=x.device, dtype=torch.bool))
attention_mask = attention_mask.view(1, 1, total_len, total_len)
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None
# decoder layers
all_hidden_states = []
# Apply blocks one-by-one.
for block_idx, block in enumerate(self.transformer.blocks):
if output_hidden_states:
# add hidden states
all_hidden_states.append(x)
layer_past = None if past_key_values is None else past_key_values[block_idx]
x, cache = block(x, attention_mask=attention_mask, position_ids=position_ids, layer_past=layer_past, use_cache=use_cache)
if attn_key_values is not None:
assert cache is not None
attn_key_values.append(cache)
if last_logits_only:
# shape: (batch_size, 1, hidden_size)
if append_last_valid_logits is not None:
last_valid_output = x[
torch.arange(x.shape[0], device=x.device), append_last_valid_logits.to(x.device)]
x = last_valid_output.unsqueeze(1)
else:
x = x[:, -1, :].unsqueeze(1)
# Apply final layer norm.
# shape: (batch_size, seq_len or 1, hidden_size)
x = self.transformer.ln_f(x) # type: ignore
if output_hidden_states:
# add final hidden state post-final-layernorm, following HuggingFace's convention
all_hidden_states.append(x)
# Get logits.
# shape: (batch_size, seq_len or 1, vocab_size)
if self.config.weight_tying:
logits = F.linear(x, self.transformer.wte.weight, None) # type: ignore
else:
logits = self.transformer.ff_out(x) # type: ignore
if self.config.scale_logits:
logits.mul_(1 / math.sqrt(self.config.hidden_size))
if not last_logits_only and append_last_valid_logits is not None:
last_valid_logit = logits[
torch.arange(logits.shape[0], device=logits.device), append_last_valid_logits]
logits = torch.cat([logits[:, :-1], last_valid_logit[:, None]], dim=1)
return ModelOutput(logits=logits, attn_key_values=attn_key_values, hidden_states=tuple(all_hidden_states) if output_hidden_states else None) # type: ignore[arg-type]
class MolmoForCausalLM(MolmoPreTrainedModel):
def __init__(self, config: MolmoConfig, model: Optional[MolmoModel] = None, init_params: bool = False):
super().__init__(config)
if not model:
self.model = MolmoModel(config, init_params=init_params)
else:
self.model = model
self.post_init()
def get_input_embeddings(self) -> torch.nn.Module:
return self.model.transformer.wte
def get_output_embeddings(self):
if self.config.weight_tying:
return self.model.transformer.wte
else:
return self.model.transformer.ff_out
def forward(
self,
input_ids: torch.LongTensor = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
attention_bias: Optional[torch.Tensor] = None,
response_mask: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
image_masks: Optional[torch.Tensor] = None,
image_input_idx: Optional[torch.Tensor] = None,
subsegment_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
loss_masks: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
last_logits_only: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
append_last_valid_logits: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[
Cache
] = None, # This is a hack mitigation of an issue in transformers `4.39.x` https://github.com/huggingface/transformers/issues/29426
) -> Union[Tuple, CausalLMOutputWithPast]:
if use_cache is None:
use_cache = self.config.use_cache
if output_attentions:
raise ValueError("output_attentions is not yet supported in Molmo")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.forward(
input_ids=input_ids,
input_embeddings=inputs_embeds,
attention_mask=attention_mask,
images=images,
image_masks=image_masks,
image_input_idx=image_input_idx,
subsegment_ids=subsegment_ids,
position_ids=position_ids,
past_key_values=past_key_values,
use_cache=use_cache,
last_logits_only=last_logits_only,
output_hidden_states=output_hidden_states,
append_last_valid_logits=append_last_valid_logits,
)
logits = outputs.logits
hidden_states = outputs.hidden_states
loss = None
if labels is not None:
if loss_masks is not None:
loss_masks = loss_masks * (loss_masks > 0)
batch_size_in_tokens = max(loss_masks.sum().item(), 1)
labels = labels.long()
labels.masked_fill_(~(loss_masks > 0), -100)
labels = labels.view(-1)
logits_for_loss = logits.to(torch.float32).view(-1, logits.size(-1))
loss_fct = torch.nn.CrossEntropyLoss(ignore_index=-100, reduction='none')
loss = loss_fct(logits_for_loss, labels)
loss = loss.view(input_ids.shape[0], -1)
loss = loss * loss_masks
loss = loss.sum() / batch_size_in_tokens
use_zloss = getattr(self.config, "softmax_auxiliary_loss", False)
if use_zloss:
z_squared = logits_for_loss.logsumexp(-1).pow(2)
z_loss = self.config.softmax_auxiliary_loss_scale * z_squared
z_loss = z_loss.view(input_ids.shape[0], -1)
z_loss = z_loss * loss_masks
z_loss = z_loss.sum() / batch_size_in_tokens
loss += z_loss
else:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = torch.nn.CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.attn_key_values,
hidden_states=hidden_states,
)
def can_generate(self) -> bool:
return True
@torch.no_grad()
def generate_from_batch(
self,
batch: Dict[str, Any],
generation_config: Optional[GenerationConfig] = None,
**kwargs,
):
if generation_config is not None:
assert generation_config.use_cache
images = batch.get("images")
image_masks = batch.get("image_masks")
image_input_idx = batch.get("image_input_idx")
# Validate inputs.
input_ids = batch["input_ids"]
batch_size, seq_len = input_ids.shape
attention_mask = batch.get("attention_mask", None)
max_new_tokens = generation_config.max_new_tokens
assert max_new_tokens is not None
mask_len = seq_len + max_new_tokens
position_ids: Optional[torch.Tensor] = None
append_last_valid_logits: Optional[torch.Tensor] = None
if attention_mask is None:
attention_mask = input_ids != -1
position_ids = torch.clamp(
torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1,
min=0
)
append_last_valid_logits = attention_mask.long().sum(dim=-1) - 1
attention_mask = torch.cat(
[attention_mask, attention_mask.new_ones((batch_size, max_new_tokens))],
dim=1,
)
if attention_mask is not None:
assert attention_mask.shape == (batch_size, mask_len)
out = super().generate(
batch["input_ids"],
generation_config,
attention_mask=attention_mask,
images=images,
image_masks=image_masks,
image_input_idx=image_input_idx,
position_ids=position_ids,
append_last_valid_logits=append_last_valid_logits,
**kwargs,
)
return out
def prepare_inputs_for_generation(
self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs
):
if past_key_values:
# This is because we want the model to only process the last generated token.
input_ids = input_ids[:, -1:]
attention_mask = kwargs.get("attention_mask")
images = kwargs.get("images")
image_masks = kwargs.get("image_masks")
image_input_idx = kwargs.get("image_input_idx")
position_ids = kwargs.get("position_ids")
append_last_valid_logits = kwargs.get("append_last_valid_logits")
model_inputs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": True,
"last_logits_only": True,
}
if past_key_values is None:
model_inputs["images"] = images
model_inputs["image_masks"] = image_masks
model_inputs["image_input_idx"] = image_input_idx
model_inputs["append_last_valid_logits"] = append_last_valid_logits
return model_inputs
def _update_model_kwargs_for_generation(
self,
outputs: ModelOutput,
model_kwargs: Dict[str, Any],
is_encoder_decoder: bool = False,
num_new_tokens: int = 1,
) -> Dict[str, Any]:
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
if "append_last_valid_logits" in model_kwargs:
del model_kwargs["append_last_valid_logits"]
if "images" in model_kwargs:
del model_kwargs["images"]
del model_kwargs["image_masks"]
del model_kwargs["image_input_idx"]
cache_name, cache = super()._extract_past_from_model_output(outputs)
model_kwargs[cache_name] = cache
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens
return model_kwargs
# Always register for multi-modal features
AutoModelForCausalLM.register(MolmoConfig, MolmoForCausalLM) |