--- license: other base_model: Qwen/Qwen2-beta-1_8B tags: - generated_from_trainer model-index: - name: quyen-1_8b results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: Qwen/Qwen2-beta-1_8B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer is_qwen_derived_model: trust_remote_code: load_in_8bit: false load_in_4bit: false strict: false datasets: - path: teknium/OpenHermes-2.5 type: sharegpt conversation: chatml dataset_prepared_path: last_run_prepared val_set_size: 0.0 output_dir: ./quyen-1_8b sequence_len: 4096 # supports up to 8192 sample_packing: true pad_to_sequence_len: true adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: lora_fan_in_fan_out: wandb_project: quyen-hermes wandb_entity: wandb_watch: wandb_name: quyen-1_8b-hermes wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 8 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0001 train_on_inputs: false group_by_length: false bf16: true fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: eval_table_size: eval_table_max_new_tokens: saves_per_epoch: 1 debug: deepspeed: deepspeed_configs/zero3_bf16.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: eos_token: "<|im_end|>" tokens: - "<|im_start|>" ```

# quyen-1_8b This model is a fine-tuned version of [Qwen/Qwen2-beta-1_8B](https://huggingface.co/Qwen/Qwen2-beta-1_8B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0