---
license: other
base_model: Qwen/Qwen2-beta-1_8B
tags:
- generated_from_trainer
model-index:
- name: quyen-1_8b
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: Qwen/Qwen2-beta-1_8B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
is_qwen_derived_model:
trust_remote_code:
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: teknium/OpenHermes-2.5
type: sharegpt
conversation: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./quyen-1_8b
sequence_len: 4096 # supports up to 8192
sample_packing: true
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: quyen-hermes
wandb_entity:
wandb_watch:
wandb_name: quyen-1_8b-hermes
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 8
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0001
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch:
eval_table_size:
eval_table_max_new_tokens:
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
eos_token: "<|im_end|>"
tokens:
- "<|im_start|>"
```
# quyen-1_8b
This model is a fine-tuned version of [Qwen/Qwen2-beta-1_8B](https://huggingface.co/Qwen/Qwen2-beta-1_8B) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0