File size: 13,563 Bytes
c82753d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
# coding=utf-8
# Copyright 2021 VinAI Research and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
""" Tokenization classes for BARTpho-syllable model."""
import os
from collections import defaultdict
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
from transformers.tokenization_utils import AddedToken
from transformers.tokenization_utils_base import EncodingFast
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
from transformers.utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_bartpho import BartphoTokenizer
else:
BartphoTokenizer = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "sentencepiece.bpe.model",
"monolingual_vocab_file": "dict.txt",
"tokenizer_file": "tokenizer.json",
}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model",
},
"monolingual_vocab_file": {
"vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt",
},
"tokenizer_file": {
"vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/tokenizer.json",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"vinai/bartpho-syllable": 1024}
class BartphoTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" BARTpho tokenizer (backed by HuggingFace's *tokenizers* library). Adapted from
[`XLMRobertaTokenizerFast`]. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`):
Additional special tokens used by the tokenizer.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = BartphoTokenizer
def __init__(
self,
vocab_file=None,
monolingual_vocab_file=None,
tokenizer_file=None,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
**kwargs
):
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
super().__init__(
vocab_file,
monolingual_vocab_file,
tokenizer_file=tokenizer_file,
bos_token=bos_token,
eos_token=eos_token,
sep_token=sep_token,
cls_token=cls_token,
unk_token=unk_token,
pad_token=pad_token,
mask_token=mask_token,
**kwargs,
)
self.vocab_file = vocab_file
self.monolingual_vocab_file = monolingual_vocab_file
self.can_save_slow_tokenizer = False if not self.vocab_file else True
def get_added_vocab_hacking(self):
"""
Returns the added tokens in the vocabulary as a dictionary of token to index.
Returns:
`Dict[str, int], Dict[int, int]`: The added tokens, and their original and new ids
"""
base_vocab_size = self._tokenizer.get_vocab_size(with_added_tokens=False)
full_vocab_size = self._tokenizer.get_vocab_size(with_added_tokens=True)
if full_vocab_size == base_vocab_size:
return {}, {}
# Tokens in added_vocab should have ids that are equal to or larger than the size of base_vocab
added_vocab = dict(
(self._tokenizer.id_to_token(index), index + 1 - base_vocab_size + self.mask_token_id)
for index in range(base_vocab_size, full_vocab_size)
)
id_mapping = dict((index, self._tokenizer.token_to_id(tok)) for tok, index in added_vocab.items())
return added_vocab, id_mapping
def _decode(
self,
token_ids: Union[int, List[int]],
skip_special_tokens: bool = False,
clean_up_tokenization_spaces: bool = True,
**kwargs
) -> str:
self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False)
if isinstance(token_ids, int):
token_ids = [token_ids]
# Mapping ids into their original values
_, id_mapping = self.get_added_vocab_hacking()
if len(id_mapping) > 0:
token_ids = [id_mapping[id] if id in id_mapping else id for id in token_ids]
text = self._tokenizer.decode(token_ids, skip_special_tokens=skip_special_tokens)
if clean_up_tokenization_spaces:
clean_text = self.clean_up_tokenization(text)
return clean_text
else:
return text
def _convert_encoding(
self,
encoding: EncodingFast,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
) -> Tuple[Dict[str, Any], List[EncodingFast]]:
"""
Convert the encoding representation (from low-level HuggingFace tokenizer output) to a python Dict and a list
of encodings, take care of building a batch from overflowing tokens.
Overflowing tokens are converted to additional examples (like batches) so the output values of the dict are
lists (overflows) of lists (tokens).
Output shape: (overflows, sequence length)
"""
if return_token_type_ids is None:
return_token_type_ids = "token_type_ids" in self.model_input_names
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
if return_overflowing_tokens and encoding.overflowing is not None:
encodings = [encoding] + encoding.overflowing
else:
encodings = [encoding]
encoding_dict = defaultdict(list)
added_vocab, _ = self.get_added_vocab_hacking()
for e in encodings:
# encoding_dict["input_ids"].append(e.ids)
# Reassign ids of tokens due to the hacking strategy
ids = []
for id, token in zip(e.ids, e.tokens):
if id <= self.mask_token_id:
ids.append(id)
else:
if token.strip() in added_vocab:
ids.append(added_vocab[token.strip()])
else:
ids.append(self.unk_token_id)
encoding_dict["input_ids"].append(ids)
if return_token_type_ids:
encoding_dict["token_type_ids"].append(e.type_ids)
if return_attention_mask:
encoding_dict["attention_mask"].append(e.attention_mask)
if return_special_tokens_mask:
encoding_dict["special_tokens_mask"].append(e.special_tokens_mask)
if return_offsets_mapping:
encoding_dict["offset_mapping"].append(e.offsets)
if return_length:
# encoding_dict["length"].append(len(e.ids))
encoding_dict["length"].append(len(ids))
return encoding_dict, encodings
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BARTpho sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s></s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. BARTpho does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a "
"slow tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory.")
return
out_vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"],
)
out_monolingual_vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"],
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
if os.path.abspath(self.monolingual_vocab_file) != os.path.abspath(out_monolingual_vocab_file):
copyfile(self.monolingual_vocab_file, out_monolingual_vocab_file)
return (out_vocab_file, out_monolingual_vocab_file)
|