Update README.md
Browse files
README.md
CHANGED
@@ -68,7 +68,8 @@ with torch.no_grad():
|
|
68 |
|
69 |
Before applying `fastBPE` to the pre-training corpus of 850M English Tweets, we tokenized these Tweets using `TweetTokenizer` from the NLTK toolkit and used the `emoji` package to translate emotion icons into text strings (here, each icon is referred to as a word token). We also normalized the Tweets by converting user mentions and web/url links into special tokens `@USER` and `HTTPURL`, respectively. Thus it is recommended to also apply the same pre-processing step for BERTweet-based downstream applications w.r.t. the raw input Tweets. BERTweet provides this pre-processing step by enabling the `normalization` argument. This argument currently only supports models "`vinai/bertweet-base`", "`vinai/bertweet-covid19-base-cased`" and "`vinai/bertweet-covid19-base-uncased`".
|
70 |
|
71 |
-
- Install `emoji`: `pip3 install emoji`
|
|
|
72 |
|
73 |
```python
|
74 |
import torch
|
|
|
68 |
|
69 |
Before applying `fastBPE` to the pre-training corpus of 850M English Tweets, we tokenized these Tweets using `TweetTokenizer` from the NLTK toolkit and used the `emoji` package to translate emotion icons into text strings (here, each icon is referred to as a word token). We also normalized the Tweets by converting user mentions and web/url links into special tokens `@USER` and `HTTPURL`, respectively. Thus it is recommended to also apply the same pre-processing step for BERTweet-based downstream applications w.r.t. the raw input Tweets. BERTweet provides this pre-processing step by enabling the `normalization` argument. This argument currently only supports models "`vinai/bertweet-base`", "`vinai/bertweet-covid19-base-cased`" and "`vinai/bertweet-covid19-base-uncased`".
|
70 |
|
71 |
+
- Install `emoji`: `pip3 install emoji==0.6.0`
|
72 |
+
- The `emoji` version must be either 0.5.4 or 0.6.0. Newer `emoji` versions have been updated to newer versions of the Emoji Charts, thus not consistent with the one used for pre-processing our pre-training Tweet corpus.
|
73 |
|
74 |
```python
|
75 |
import torch
|