# coding=utf-8 # Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team. # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization classes for BERTweet""" import os from collections import defaultdict from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union from transformers.tokenization_utils_base import EncodingFast from transformers.tokenization_utils_fast import PreTrainedTokenizerFast from transformers.utils import logging from transformers import BertweetTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", "tokenizer_file": "tokenizer.json", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "vinai/bertweet-base": "https://huggingface.co/vinai/bertweet-base/resolve/main/vocab.txt", }, "merges_file": { "vinai/bertweet-base": "https://huggingface.co/vinai/bertweet-base/resolve/main/bpe.codes", }, "tokenizer_file": { "vinai/bertweet-base": "https://huggingface.co/vinai/bertweet-base/resolve/main/tokenizer.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "vinai/bertweet-base": 128, } class BertweetTokenizerFast(PreTrainedTokenizerFast): """ Construct a "Fast" BPE tokenizer for BERTweet (backed by HuggingFace's *tokenizers* library). Peculiarities: - uses BERT's pre-tokenizer: BertPreTokenizer splits tokens on spaces, and also on punctuation. Each occurrence of a punctuation character will be treated separately. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the methods. Users should refer to the superclass for more information regarding methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = BertweetTokenizer def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, bos_token="", eos_token="", sep_token="", cls_token="", unk_token="", pad_token="", mask_token="", **kwargs ): super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, **kwargs, ) self.vocab_file = vocab_file self.merges_file = merges_file self.can_save_slow_tokenizer = False if not self.vocab_file else True def get_added_vocab_hacking(self): """ Returns the added tokens in the vocabulary as a dictionary of token to index. Returns: `Dict[str, int], Dict[int, int]`: The added tokens, and their original and new ids """ base_vocab_size = self._tokenizer.get_vocab_size(with_added_tokens=False) full_vocab_size = self._tokenizer.get_vocab_size(with_added_tokens=True) if full_vocab_size == base_vocab_size: return {}, {} # Tokens in added_vocab should have ids that are equal to or larger than the size of base_vocab added_vocab = dict( (self._tokenizer.id_to_token(index), index + 1 - base_vocab_size + self.mask_token_id) for index in range(base_vocab_size, full_vocab_size) ) id_mapping = dict((index, self._tokenizer.token_to_id(tok)) for tok, index in added_vocab.items()) return added_vocab, id_mapping def _decode( self, token_ids: Union[int, List[int]], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = True, **kwargs ) -> str: self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False) if isinstance(token_ids, int): token_ids = [token_ids] # Mapping ids into their original values _, id_mapping = self.get_added_vocab_hacking() if len(id_mapping) > 0: token_ids = [id_mapping[id] if id in id_mapping else id for id in token_ids] text = self._tokenizer.decode(token_ids, skip_special_tokens=skip_special_tokens) if clean_up_tokenization_spaces: clean_text = self.clean_up_tokenization(text) return clean_text else: return text def _convert_encoding( self, encoding: EncodingFast, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, ) -> Tuple[Dict[str, Any], List[EncodingFast]]: """ Convert the encoding representation (from low-level HuggingFace tokenizer output) to a python Dict and a list of encodings, take care of building a batch from overflowing tokens. Overflowing tokens are converted to additional examples (like batches) so the output values of the dict are lists (overflows) of lists (tokens). Output shape: (overflows, sequence length) """ if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names if return_overflowing_tokens and encoding.overflowing is not None: encodings = [encoding] + encoding.overflowing else: encodings = [encoding] encoding_dict = defaultdict(list) added_vocab, _ = self.get_added_vocab_hacking() for e in encodings: # encoding_dict["input_ids"].append(e.ids) # Reassign ids of tokens due to the hacking strategy ids = [] for id, token in zip(e.ids, e.tokens): if id <= self.mask_token_id: ids.append(id) else: if token.strip() in added_vocab: ids.append(added_vocab[token.strip()]) else: ids.append(self.unk_token_id) encoding_dict["input_ids"].append(ids) if return_token_type_ids: encoding_dict["token_type_ids"].append(e.type_ids) if return_attention_mask: encoding_dict["attention_mask"].append(e.attention_mask) if return_special_tokens_mask: encoding_dict["special_tokens_mask"].append(e.special_tokens_mask) if return_offsets_mapping: encoding_dict["offset_mapping"].append(e.offsets) if return_length: # encoding_dict["length"].append(len(e.ids)) encoding_dict["length"].append(len(ids)) return encoding_dict, encodings def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERTweet sequence has the following format: - single sequence: ` X ` - pair of sequences: ` A B ` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. BERTweet does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory.") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) out_merges_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) if os.path.abspath(self.merges_file) != os.path.abspath(out_merges_file): copyfile(self.merges_file, out_merges_file) return (out_vocab_file, out_merges_file)