File size: 4,355 Bytes
d59e2e6 deb4161 d59e2e6 7dcf6c8 c4b2482 1a0be64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
# <a name="introduction"></a> BERTweet: A pre-trained language model for English Tweets
BERTweet is the first public large-scale language model pre-trained for English Tweets. BERTweet is trained based on the [RoBERTa](https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.md) pre-training procedure. The corpus used to pre-train BERTweet consists of 850M English Tweets (16B word tokens ~ 80GB), containing 845M Tweets streamed from 01/2012 to 08/2019 and 5M Tweets related to the **COVID-19** pandemic. The general architecture and experimental results of BERTweet can be found in our [paper](https://aclanthology.org/2020.emnlp-demos.2/):
@inproceedings{bertweet,
title = {{BERTweet: A pre-trained language model for English Tweets}},
author = {Dat Quoc Nguyen and Thanh Vu and Anh Tuan Nguyen},
booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations},
pages = {9--14},
year = {2020}
}
**Please CITE** our paper when BERTweet is used to help produce published results or is incorporated into other software.
For further information or requests, please go to [BERTweet's homepage](https://github.com/VinAIResearch/BERTweet)!
### Main results
<p float="left">
<img width="275" alt="postagging" src="https://user-images.githubusercontent.com/2412555/135724590-01d8d435-262d-44fe-a383-cd39324fe190.png" />
<img width="275" alt="ner" src="https://user-images.githubusercontent.com/2412555/135724598-1e3605e7-d8ce-4c5e-be4a-62ae8501fae7.png" />
</p>
<p float="left">
<img width="275" alt="sentiment" src="https://user-images.githubusercontent.com/2412555/135724597-f1981f1e-fe73-4c03-b1ff-0cae0cc5f948.png" />
<img width="275" alt="irony" src="https://user-images.githubusercontent.com/2412555/135724595-15f4f2c8-bbb6-4ee6-82a0-034769dec183.png" />
</p>
### <a name="models2"></a> Pre-trained models
Model | #params | Arch. | Pre-training data
---|---|---|---
`vinai/bertweet-base` | 135M | base | 850M English Tweets (cased)
`vinai/bertweet-covid19-base-cased` | 135M | base | 23M COVID-19 English Tweets (cased)
`vinai/bertweet-covid19-base-uncased` | 135M | base | 23M COVID-19 English Tweets (uncased)
`vinai/bertweet-large` | 355M | large | 873M English Tweets (cased)
### <a name="usage2"></a> Example usage
```python
import torch
from transformers import AutoModel, AutoTokenizer
bertweet = AutoModel.from_pretrained("vinai/bertweet-large")
tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-large")
# INPUT TWEET IS ALREADY NORMALIZED!
line = "SC has first two presumptive cases of coronavirus , DHEC confirms HTTPURL via @USER :cry:"
input_ids = torch.tensor([tokenizer.encode(line)])
with torch.no_grad():
features = bertweet(input_ids) # Models outputs are now tuples
## With TensorFlow 2.0+:
# from transformers import TFAutoModel
# bertweet = TFAutoModel.from_pretrained("vinai/bertweet-large")
```
### <a name="preprocess"></a> Normalize raw input Tweets
Before applying BPE to the pre-training corpus of English Tweets, we tokenized these Tweets using `TweetTokenizer` from the NLTK toolkit and used the `emoji` package to translate emotion icons into text strings (here, each icon is referred to as a word token). We also normalized the Tweets by converting user mentions and web/url links into special tokens `@USER` and `HTTPURL`, respectively. Thus it is recommended to also apply the same pre-processing step for BERTweet-based downstream applications w.r.t. the raw input Tweets.
For `vinai/bertweet-large`, given the raw input Tweets, to obtain the same pre-processing output, users could employ our [TweetNormalizer](https://github.com/VinAIResearch/BERTweet/blob/master/TweetNormalizer.py) module.
- Installation: `pip3 install nltk emoji`
```python
import torch
from transformers import AutoTokenizer
from TweetNormalizer import normalizeTweet
tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-large")
line = normalizeTweet("DHEC confirms https://postandcourier.com/health/covid19/sc-has-first-two-presumptive-cases-of-coronavirus-dhec-confirms/article_bddfe4ae-5fd3-11ea-9ce4-5f495366cee6.html?utm_medium=social&utm_source=twitter&utm_campaign=user-share… via @postandcourier 😢")
input_ids = torch.tensor([tokenizer.encode(line)])
```
|