a2c-PandaReachDense-v3 / config.json
vinben007's picture
Initial commit
3f8bd26
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b1252d8d900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b1252d85f00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697125628591715011, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1kQnvw82rj+N3IM/vUYjvzXYq75xL6s+Hhr6Oz8Izz4hQh4/+XuGP+DGpT8/Qak/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACSSoPXrTjT8Fpc8/2G6xv8xvuL6Bb5s+wmssvIOalD5a8No/rlXWP/K/nj9RV7o/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADWRCe/DzauP43cgz9bl/Y+AWKFP3pq8T+9RiO/NdirvnEvqz6DJ2S/UucEvw94Wj8eGvo7PwjPPiFCHj89+eU+BEpvP5aWlT/5e4Y/4MalPz9BqT8KNZA/ITZgP9YFvT+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.6533941 1.3610247 1.0301682 ]\n [-0.63779813 -0.3356339 0.33434632]\n [ 0.00763251 0.4043598 0.61819655]\n [ 1.0506583 1.2951317 1.3223037 ]]", "desired_goal": "[[ 0.08209998 1.1080163 1.6222235 ]\n [-1.3861952 -0.36022794 0.30358508]\n [-0.01052374 0.29024133 1.71046 ]\n [ 1.6744897 1.2402327 1.4557897 ]]", "observation": "[[-0.6533941 1.3610247 1.0301682 0.4816235 1.0420533 1.8860619 ]\n [-0.63779813 -0.3356339 0.33434632 -0.8912279 -0.51915467 0.85339445]\n [ 0.00763251 0.4043598 0.61819655 0.44916716 0.93472314 1.168658 ]\n [ 1.0506583 1.2951317 1.3223037 1.1266186 0.87582594 1.4767406 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7RwVvXxS2D3Ptok+UrXXPVCpB73zZqk9BLu+PCFIcry2mxM+j9DxuvswIL0w5HQ9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03640454 0.10562608 0.26897284]\n [ 0.10532631 -0.03312045 0.08271589]\n [ 0.02328254 -0.0147877 0.14414868]\n [-0.0018449 -0.03910921 0.05978793]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9CAxzq8lHCMAWyUSwOMAXSUR0Ck9kZuqFRHdX2UKGgGR7+vG6wt8NQTaAdLAmgIR0Ck9c63qiXZdX2UKGgGR7/SJUYKpkwwaAdLA2gIR0Ck9g8CPp6hdX2UKGgGR7/Sq7yxzJZGaAdLA2gIR0Ck9Zeh4+r3dX2UKGgGR7/Cq8UVSGahaAdLAmgIR0Ck9dfU4JeFdX2UKGgGR7+/KMefZmI1aAdLAmgIR0Ck9h/336AOdX2UKGgGR7/BSgoPTXrdaAdLAmgIR0Ck9alCswL3dX2UKGgGR7/bcfNiYsunaAdLBGgIR0Ck9mIhhYvGdX2UKGgGR7/EiUxEfDDTaAdLAmgIR0Ck9m/c32mIdX2UKGgGR7/M36yjYZl4aAdLA2gIR0Ck9jUulGgBdX2UKGgGR7/gEuHvc8DCaAdLBGgIR0Ck9fp1RtP6dX2UKGgGR7/Kn2IwdsBRaAdLA2gIR0Ck9b/g75mAdX2UKGgGR7++orFwT/Q0aAdLAmgIR0Ck9kxJd0JXdX2UKGgGR7/AB5ooNNJwaAdLAmgIR0Ck9hH7pFCtdX2UKGgGR7/Odz4k/r0KaAdLA2gIR0Ck9pDJdSl4dX2UKGgGR7+ogPmPo3aSaAdLAWgIR0Ck9lcDjin6dX2UKGgGR7/WlXA/LTx5aAdLBGgIR0Ck9ehDG96DdX2UKGgGR7/FnUUfxMFmaAdLA2gIR0Ck9ipyZKFqdX2UKGgGR7/QsGPgeii7aAdLA2gIR0Ck9qizcAR1dX2UKGgGR7/SUnXumaYvaAdLA2gIR0Ck9m4jrzGxdX2UKGgGR7/BgXMyJsO5aAdLAmgIR0Ck9fhn8KoidX2UKGgGR7/KJ53Tuv2XaAdLA2gIR0Ck9kWWQfZFdX2UKGgGR7/HZHNHH3lCaAdLA2gIR0Ck9sMy8BdVdX2UKGgGR7/FcAzYVZcLaAdLA2gIR0Ck9oh0IToMdX2UKGgGR7/KAEMb3oLYaAdLA2gIR0Ck9hJ4rz5HdX2UKGgGR7/CPRRdhRZVaAdLAmgIR0Ck9pYD9wWFdX2UKGgGR7/OI1tO2y9maAdLA2gIR0Ck9lp53TuwdX2UKGgGR7+zGHYYixFBaAdLAmgIR0Ck9h/Aj6eodX2UKGgGR7/WrYoRZlnRaAdLA2gIR0Ck9tyeAd4ndX2UKGgGR7/AFlkH2RJVaAdLAmgIR0Ck9nJRfnfVdX2UKGgGR7/MXxe9i+cpaAdLA2gIR0Ck9j+98JD3dX2UKGgGR7/MpH7P6be/aAdLA2gIR0Ck9vhQFcIJdX2UKGgGR7/Y3/giu+yraAdLBGgIR0Ck9r23BpHqdX2UKGgGR7+5UedTYNAkaAdLAmgIR0Ck9oJ3HJcPdX2UKGgGR7/BhZyMkyDaaAdLAmgIR0Ck9k2nbZezdX2UKGgGR7/NY3eenQ6ZaAdLA2gIR0Ck9xATIvJzdX2UKGgGR7/M4Ds+mm+CaAdLA2gIR0Ck9tUZeiSJdX2UKGgGR7/RpPAO8TSLaAdLA2gIR0Ck9pmu1WsBdX2UKGgGR7+3j+717IDHaAdLAmgIR0Ck9x6Eal1sdX2UKGgGR7/EOXmeUY8/aAdLAmgIR0Ck9uN6gM+edX2UKGgGR7/WPSlWOp84aAdLBGgIR0Ck9m3GGVRldX2UKGgGR7/ZKaXrt3OfaAdLBGgIR0Ck9rrKV6eHdX2UKGgGR7/Bl/6O5rgwaAdLAmgIR0Ck9n/+CK77dX2UKGgGR7/UoqCpWFN+aAdLA2gIR0Ck9zied07sdX2UKGgGR7/D5JK8L8aXaAdLA2gIR0Ck9v3zcynDdX2UKGgGR7/Hg4OtnwocaAdLA2gIR0Ck9tCmdiDvdX2UKGgGR7/Rc1O0svqUaAdLA2gIR0Ck9xNHpbD/dX2UKGgGR7+mfdyksSTRaAdLAWgIR0Ck9tfG+9J0dX2UKGgGR7/ZJCSidrftaAdLBGgIR0Ck9p0+s5n2dX2UKGgGR7/Yi2lVLi++aAdLBGgIR0Ck91kD6nBMdX2UKGgGR7/Ht8eCCjDbaAdLA2gIR0Ck9vBiTdLydX2UKGgGR7/Row22oegdaAdLA2gIR0Ck9rXMQmNSdX2UKGgGR7/L7Uoa1kUcaAdLA2gIR0Ck928GC7K8dX2UKGgGR7/ahfBvaURnaAdLBGgIR0Ck9zRiobXIdX2UKGgGR7+zyVfNRm9QaAdLAmgIR0Ck9v+cH4XXdX2UKGgGR7+6FAVwgkkbaAdLAmgIR0Ck9sTo2XLNdX2UKGgGR7/AdBjWkJrtaAdLAmgIR0Ck90Wz4UN8dX2UKGgGR7/SVAAyVObiaAdLBGgIR0Ck946LGaQWdX2UKGgGR7+6tknTiKixaAdLAmgIR0Ck91OKGcnWdX2UKGgGR7/M+7Dl5nlGaAdLA2gIR0Ck9t1B2OhkdX2UKGgGR7/GV0tAcDKYaAdLA2gIR0Ck96dnTRYzdX2UKGgGR7/QOt4iX6ZZaAdLA2gIR0Ck92xjawljdX2UKGgGR7/haGHpKSPmaAdLBmgIR0Ck9zFRP421dX2UKGgGR7/WzJZGKAJ+aAdLBGgIR0Ck9v3dCVrzdX2UKGgGR7/BzVc2R7qqaAdLAmgIR0Ck97Z0Syt3dX2UKGgGR7+0u7HyVfNSaAdLAmgIR0Ck90Aow22odX2UKGgGR7/RyHmA9V3maAdLA2gIR0Ck94LEDQqqdX2UKGgGR7/CpqASWZ7YaAdLAmgIR0Ck901jy4FzdX2UKGgGR7/UKhtcfNiZaAdLA2gIR0Ck9xKi48U3dX2UKGgGR7/QxGDtgKF7aAdLA2gIR0Ck984PGyX2dX2UKGgGR7+xTGYKIBRyaAdLAmgIR0Ck95MZHd43dX2UKGgGR7+5q8Djin50aAdLAmgIR0Ck9yNDUmUodX2UKGgGR7+5MBZIQOFyaAdLAmgIR0Ck96Ctq59WdX2UKGgGR7/NesxO+IuXaAdLA2gIR0Ck92V/DtPYdX2UKGgGR7/Tr92ovSMMaAdLA2gIR0Ck9+OJk5IZdX2UKGgGR7+i2OQyRB/raAdLAWgIR0Ck9+oWpIczdX2UKGgGR7+2sMiKR+z/aAdLAmgIR0Ck968GTs6adX2UKGgGR7+/sZ5zHS4OaAdLAmgIR0Ck93OnMt9QdX2UKGgGR7/Ig/1QIldDaAdLA2gIR0Ck9zlc6eXidX2UKGgGR7+4/r0J4SpSaAdLAmgIR0Ck9/sYuTRqdX2UKGgGR7++1lXiiqQzaAdLAmgIR0Ck94RhMJyAdX2UKGgGR7/FNL127nPnaAdLA2gIR0Ck98dZRsMzdX2UKGgGR7/HI065oXbeaAdLA2gIR0Ck91FbVz6rdX2UKGgGR7+o+2VmjCYUaAdLAWgIR0Ck987/XGwSdX2UKGgGR7+7Xz19ORDDaAdLAmgIR0Ck95OIAOridX2UKGgGR7/HuIAOrhitaAdLA2gIR0Ck+BFFDv3KdX2UKGgGR7+RNATqSowVaAdLAWgIR0Ck99YYR/VidX2UKGgGR7+79R77bcoIaAdLAmgIR0Ck91+O4oZydX2UKGgGR7/SgwXZXdTHaAdLA2gIR0Ck96qDK5kLdX2UKGgGR7/Ai5d4VymzaAdLAmgIR0Ck92+zMRpUdX2UKGgGR7/T4S6DoQnQaAdLA2gIR0Ck+CjaPCEYdX2UKGgGR7/UZpBX0XgtaAdLBGgIR0Ck9/S1/lQudX2UKGgGR7/IIcBEKE39aAdLA2gIR0Ck94V/MGHIdX2UKGgGR7/NYpUgjhUBaAdLA2gIR0Ck+EFi8WbgdX2UKGgGR7/W4BFNL128aAdLBGgIR0Ck98r127nQdX2UKGgGR7/EPkJa7mMgaAdLA2gIR0Ck+A3KbKA8dX2UKGgGR7+ymCROk+HKaAdLAmgIR0Ck+E+CK77LdX2UKGgGR7/FdkauOjqOaAdLA2gIR0Ck953n6l+FdX2UKGgGR7+3bL2YfGMoaAdLAmgIR0Ck+Bsx46fbdX2UKGgGR7/UrksBhhH9aAdLA2gIR0Ck99++23KCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}