--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer model-index: - name: qlora-adapter-Llama-2-7b-hf-databricks-dolly-15k results: [] --- # qlora-adapter-Llama-2-7b-hf-databricks-dolly-15k This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) dataset. It achieves the following results on the evaluation set: - Loss: 1.1313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed Trained on RTX A5000 - 24GB GPU. The training took 3 hours 31 mins on the datasets with 12008 train samples and 1501 validation samples ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.1584 | 0.08 | 1000 | 1.1782 | | 1.0667 | 0.17 | 2000 | 1.1710 | | 1.0662 | 0.25 | 3000 | 1.1599 | | 1.0517 | 0.33 | 4000 | 1.1569 | | 1.0479 | 0.42 | 5000 | 1.1502 | | 1.0516 | 0.5 | 6000 | 1.1441 | | 1.0612 | 0.58 | 7000 | 1.1397 | | 1.0235 | 0.67 | 8000 | 1.1361 | | 1.0259 | 0.75 | 9000 | 1.1339 | | 1.0485 | 0.83 | 10000 | 1.1320 | | 1.0406 | 0.92 | 11000 | 1.1314 | | 1.0393 | 1.0 | 12000 | 1.1313 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3