nielsr HF staff commited on
Commit
30fab18
1 Parent(s): c0b1881

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - vision
5
+ - image-segmentation
6
+ datasets:
7
+ - scene_parse_150
8
+ widget:
9
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
10
+ example_title: Tiger
11
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
12
+ example_title: Teapot
13
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
14
+ example_title: Palace
15
+ ---
16
+
17
+ # GLPN fine-tuned on KITTI
18
+
19
+ Global-Local Path Networks (GLPN) model trained on KITTI for monocular depth estimation. It was introduced in the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Kim et al. and first released in [this repository](https://github.com/vinvino02/GLPDepth).
20
+
21
+ Disclaimer: The team releasing GLPN did not write a model card for this model so this model card has been written by the Hugging Face team.
22
+
23
+ ## Model description
24
+
25
+ GLPN uses SegFormer as backbone and adds a lightweight head on top for depth estimation.
26
+
27
+ ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/glpn_architecture.jpg)
28
+
29
+ ## Intended uses & limitations
30
+
31
+ You can use the raw model for monocular depth estimation. See the [model hub](https://huggingface.co/models?search=glpn) to look for
32
+ fine-tuned versions on a task that interests you.
33
+
34
+ ### How to use
35
+
36
+ Here is how to use this model:
37
+
38
+ ```python
39
+ from transformers import GLPNFeatureExtractor, GLPNForDepthEstimation
40
+ import torch
41
+ import numpy as np
42
+ from PIL import Image
43
+ import requests
44
+
45
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
46
+ image = Image.open(requests.get(url, stream=True).raw)
47
+
48
+ feature_extractor = GLPNFeatureExtractor.from_pretrained("vinvino02/glpn-kitti")
49
+ model = GLPNForDepthEstimation.from_pretrained("vinvino02/glpn-kitti")
50
+
51
+ # prepare image for the model
52
+ inputs = feature_extractor(images=image, return_tensors="pt")
53
+
54
+ with torch.no_grad():
55
+ outputs = model(**inputs)
56
+ predicted_depth = outputs.predicted_depth
57
+
58
+ # interpolate to original size
59
+ prediction = torch.nn.functional.interpolate(
60
+ predicted_depth.unsqueeze(1),
61
+ size=image.size[::-1],
62
+ mode="bicubic",
63
+ align_corners=False,
64
+ )
65
+
66
+ # visualize the prediction
67
+ output = prediction.squeeze().cpu().numpy()
68
+ formatted = (output * 255 / np.max(output)).astype("uint8")
69
+ depth = Image.fromarray(formatted)
70
+ ```
71
+
72
+ For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/glpn).
73
+
74
+ ### BibTeX entry and citation info
75
+
76
+ ```bibtex
77
+ @article{DBLP:journals/corr/abs-2201-07436,
78
+ author = {Doyeon Kim and
79
+ Woonghyun Ga and
80
+ Pyunghwan Ahn and
81
+ Donggyu Joo and
82
+ Sehwan Chun and
83
+ Junmo Kim},
84
+ title = {Global-Local Path Networks for Monocular Depth Estimation with Vertical
85
+ CutDepth},
86
+ journal = {CoRR},
87
+ volume = {abs/2201.07436},
88
+ year = {2022},
89
+ url = {https://arxiv.org/abs/2201.07436},
90
+ eprinttype = {arXiv},
91
+ eprint = {2201.07436},
92
+ timestamp = {Fri, 21 Jan 2022 13:57:15 +0100},
93
+ biburl = {https://dblp.org/rec/journals/corr/abs-2201-07436.bib},
94
+ bibsource = {dblp computer science bibliography, https://dblp.org}
95
+ }```