|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import math |
|
from dataclasses import dataclass, field |
|
from typing import Any, Dict, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange, repeat |
|
from transformers import PretrainedConfig, PreTrainedModel |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
from .configuration_phi import PhiConfig |
|
|
|
try: |
|
from flash_attn.bert_padding import pad_input, unpad_input |
|
from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding |
|
from flash_attn.modules.mha import FlashCrossAttention, FlashSelfAttention |
|
from flash_attn.ops.fused_dense import FusedDense |
|
except: |
|
pad_input, unpad_input = None, None |
|
FlashRotaryEmbedding = None |
|
FlashSelfAttention, FlashCrossAttention = None, None |
|
FusedDense = None |
|
|
|
|
|
@dataclass |
|
class InferenceParams: |
|
"""Inference parameters passed to model to efficiently calculate |
|
and store context during inference. |
|
|
|
Reference: |
|
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py. |
|
|
|
Args: |
|
max_seqlen: Maximum sequence length. |
|
max_batch_size: Maximum batch size. |
|
seqlen_offset: Sequence length offset. |
|
batch_size_offset: Batch size offset. |
|
key_value_memory_dict: Key value memory dictionary. |
|
lengths_per_sample: Lengths per sample. |
|
|
|
""" |
|
|
|
max_seqlen: int = field(metadata={"help": "Maximum sequence length."}) |
|
|
|
max_batch_size: int = field(metadata={"help": "Maximum batch size."}) |
|
|
|
seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."}) |
|
|
|
batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."}) |
|
|
|
key_value_memory_dict: Dict[str, Any] = field( |
|
default_factory=dict, metadata={"help": "Key value memory dictionary."} |
|
) |
|
|
|
lengths_per_sample: torch.Tensor = field(default=None, metadata={"help": "Lengths per sample."}) |
|
|
|
|
|
class Embedding(nn.Module): |
|
"""Token embedding with dropout.""" |
|
|
|
def __init__(self, config: PretrainedConfig) -> None: |
|
super().__init__() |
|
|
|
self.wte = nn.Embedding(config.vocab_size, config.n_embd) |
|
self.drop = nn.Dropout(config.embd_pdrop) |
|
|
|
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
|
|
hidden_states = self.wte(input_ids) |
|
hidden_states = self.drop(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
def _apply_rotary_emb( |
|
x: torch.FloatTensor, |
|
cos: torch.FloatTensor, |
|
sin: torch.FloatTensor, |
|
) -> torch.FloatTensor: |
|
_, seqlen, _, _ = x.shape |
|
_, rotary_dim = cos.shape |
|
rotary_dim *= 2 |
|
|
|
x_rot = x[:, :, :, :rotary_dim] |
|
x_pass = x[:, :, :, rotary_dim:] |
|
|
|
x1, x2 = x_rot.chunk(2, dim=-1) |
|
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d") |
|
x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]] |
|
|
|
x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype) |
|
|
|
return torch.cat([x_rot, x_pass], axis=-1) |
|
|
|
|
|
def _apply_rotary_emb_kv( |
|
kv: torch.FloatTensor, |
|
cos: torch.FloatTensor, |
|
sin: torch.FloatTensor, |
|
cos_k: Optional[torch.FloatTensor] = None, |
|
sin_k: Optional[torch.FloatTensor] = None, |
|
) -> torch.FloatTensor: |
|
_, seqlen, _, _, _ = kv.shape |
|
_, rotary_dim = cos.shape |
|
rotary_dim *= 2 |
|
|
|
k_rot = kv[:, :, 0, :, :rotary_dim] |
|
k_pass = kv[:, :, 0, :, rotary_dim:] |
|
|
|
k1, k2 = k_rot.chunk(2, dim=-1) |
|
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d") |
|
k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]] |
|
|
|
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype) |
|
|
|
return torch.cat( |
|
[ |
|
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2), |
|
kv[:, :, 1:2, :, :], |
|
], |
|
axis=2, |
|
) |
|
|
|
|
|
def _apply_rotary_emb_qkv( |
|
qkv: torch.FloatTensor, |
|
cos: torch.FloatTensor, |
|
sin: torch.FloatTensor, |
|
cos_k: Optional[torch.FloatTensor] = None, |
|
sin_k: Optional[torch.FloatTensor] = None, |
|
) -> torch.FloatTensor: |
|
_, seqlen, _, _, _ = qkv.shape |
|
_, rotary_dim = cos.shape |
|
rotary_dim *= 2 |
|
|
|
q_rot = qkv[:, :, 0, :, :rotary_dim] |
|
q_pass = qkv[:, :, 0, :, rotary_dim:] |
|
|
|
k_rot = qkv[:, :, 1, :, :rotary_dim] |
|
k_pass = qkv[:, :, 1, :, rotary_dim:] |
|
|
|
q1, q2 = q_rot.chunk(2, dim=-1) |
|
k1, k2 = k_rot.chunk(2, dim=-1) |
|
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d") |
|
q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]] |
|
|
|
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype) |
|
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype) |
|
|
|
return torch.cat( |
|
[ |
|
torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2), |
|
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2), |
|
qkv[:, :, 2:3, :, :], |
|
], |
|
axis=2, |
|
) |
|
|
|
|
|
class RotaryEmbedding(nn.Module): |
|
"""Rotary positional embedding (RoPE). |
|
|
|
Reference: |
|
RoFormer: Enhanced Transformer with Rotary Position Embedding. |
|
https://arxiv.org/pdf/2104.09864.pdf. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
base: int = 10000, |
|
scale_base: Optional[float] = None, |
|
pos_idx_in_fp32: bool = True, |
|
max_position_embeddings: int = 2048, |
|
device: Optional[str] = None, |
|
**kwargs, |
|
) -> None: |
|
super().__init__() |
|
|
|
if scale_base is not None: |
|
raise NotImplementedError |
|
|
|
self.dim = dim |
|
self.base = float(base) |
|
self.scale_base = scale_base |
|
self.pos_idx_in_fp32 = pos_idx_in_fp32 |
|
self.max_position_embeddings = max_position_embeddings |
|
self.device = device |
|
|
|
|
|
inv_freq = self._compute_inv_freq(device) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
scale = ( |
|
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim) |
|
if scale_base is not None |
|
else None |
|
) |
|
self.register_buffer("scale", scale, persistent=False) |
|
|
|
|
|
self._update_cos_sin_cache(max_position_embeddings, device=device, dtype=torch.float32) |
|
|
|
def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor: |
|
return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)) |
|
|
|
def _update_cos_sin_cache( |
|
self, |
|
seqlen: int, |
|
device: Optional[str] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
) -> None: |
|
self._seq_len_cached = seqlen |
|
|
|
|
|
|
|
if self.pos_idx_in_fp32: |
|
t = torch.arange(seqlen, device=device, dtype=torch.float32) |
|
if self.inv_freq.dtype != torch.float32: |
|
inv_freq = self._compute_inv_freq(device=device) |
|
else: |
|
inv_freq = self.inv_freq |
|
else: |
|
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) |
|
inv_freq = self.inv_freq |
|
|
|
|
|
freqs = torch.outer(t, inv_freq) |
|
if self.scale is None: |
|
self._cos_cached = torch.cos(freqs).to(dtype) |
|
self._sin_cached = torch.sin(freqs).to(dtype) |
|
else: |
|
power = ( |
|
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2 |
|
) / self.scale_base |
|
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1") |
|
|
|
|
|
self._cos_cached = (torch.cos(freqs) * scale).to(dtype) |
|
self._sin_cached = (torch.sin(freqs) * scale).to(dtype) |
|
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype) |
|
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype) |
|
|
|
def forward( |
|
self, |
|
qkv: torch.Tensor, |
|
kv: Optional[torch.Tensor] = None, |
|
seqlen_offset: int = 0, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
if ( |
|
self._seq_len_cached < qkv.shape[1] + seqlen_offset |
|
or self._cos_cached.device != qkv.device |
|
or self._cos_cached.dtype != qkv.dtype |
|
or (self.training and self._cos_cached.is_inference()) |
|
): |
|
self._update_cos_sin_cache(qkv.shape[1] + seqlen_offset, device=qkv.device, dtype=qkv.dtype) |
|
|
|
if kv is None: |
|
return _apply_rotary_emb_qkv( |
|
qkv, |
|
self._cos_cached[seqlen_offset:], |
|
self._sin_cached[seqlen_offset:], |
|
) |
|
else: |
|
q = _apply_rotary_emb( |
|
qkv, |
|
self._cos_cached[seqlen_offset:], |
|
self._sin_cached[seqlen_offset:], |
|
) |
|
kv = _apply_rotary_emb_kv( |
|
kv, |
|
self._cos_cached[seqlen_offset:], |
|
self._sin_cached[seqlen_offset:], |
|
) |
|
|
|
return q, kv |
|
|
|
|
|
class MLP(nn.Module): |
|
"""Multi-Layer Perceptron. |
|
|
|
Reference: |
|
Attention Is All You Need. |
|
https://arxiv.org/pdf/1706.03762.pdf. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
config: PretrainedConfig, |
|
n_inner: Optional[int] = None, |
|
act_fn: Optional[str] = None, |
|
) -> None: |
|
super().__init__() |
|
|
|
act_fn = config.activation_function if act_fn is None else act_fn |
|
|
|
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner |
|
n_inner = n_inner if n_inner is not None else 4 * config.n_embd |
|
|
|
self.fc1 = nn.Linear(config.n_embd, n_inner) |
|
self.fc2 = nn.Linear(n_inner, config.n_embd) |
|
self.act = ACT2FN[act_fn] |
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: |
|
hidden_states = self.fc1(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.fc2(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class SelfAttention(nn.Module): |
|
"""Self-attention layer (compatible with PyTorch). |
|
|
|
Reference: |
|
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
causal: bool = True, |
|
softmax_scale: Optional[float] = None, |
|
attention_dropout: float = 0.0, |
|
) -> None: |
|
super().__init__() |
|
|
|
self.causal = causal |
|
self.softmax_scale = softmax_scale |
|
self.drop = nn.Dropout(attention_dropout) |
|
|
|
@torch.autocast("cpu", enabled=False) |
|
@torch.autocast("cuda", enabled=False) |
|
def forward( |
|
self, |
|
qkv: torch.FloatTensor, |
|
causal: bool = None, |
|
key_padding_mask: Optional[torch.BoolTensor] = None, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
batch_size, seqlen = qkv.shape[0], qkv.shape[1] |
|
q, k, v = qkv.unbind(dim=2) |
|
|
|
q = q.to(torch.float32) |
|
k = k.to(torch.float32) |
|
|
|
causal = self.causal if causal is None else causal |
|
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) |
|
|
|
|
|
|
|
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale) |
|
|
|
if key_padding_mask is not None: |
|
padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device) |
|
padding_mask.masked_fill_(key_padding_mask, 0.0) |
|
|
|
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s") |
|
|
|
if causal: |
|
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1) |
|
scores = scores + causal_mask.to(dtype=scores.dtype) |
|
|
|
attention = torch.softmax(scores, dim=-1).to(v.dtype) |
|
attention = self.drop(attention) |
|
|
|
output = torch.einsum("bhts,bshd->bthd", attention, v) |
|
|
|
return output |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
"""Cross-attention layer (compatible with PyTorch). |
|
|
|
Reference: |
|
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
causal: bool = True, |
|
softmax_scale: Optional[float] = None, |
|
attention_dropout: float = 0.0, |
|
) -> None: |
|
super().__init__() |
|
|
|
self.causal = causal |
|
self.softmax_scale = softmax_scale |
|
self.drop = nn.Dropout(attention_dropout) |
|
|
|
@torch.autocast("cpu", enabled=False) |
|
@torch.autocast("cuda", enabled=False) |
|
def forward( |
|
self, |
|
q: torch.FloatTensor, |
|
kv: torch.FloatTensor, |
|
causal: bool = None, |
|
key_padding_mask: Optional[torch.BoolTensor] = None, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
batch_size, seqlen_q = q.shape[0], q.shape[1] |
|
seqlen_k = kv.shape[1] |
|
|
|
if kv.shape[3] != q.shape[2]: |
|
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3]) |
|
k, v = kv.unbind(dim=2) |
|
|
|
q = q.to(torch.float32) |
|
k = k.to(torch.float32) |
|
|
|
causal = self.causal if causal is None else causal |
|
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) |
|
|
|
|
|
|
|
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale) |
|
|
|
if key_padding_mask is not None: |
|
padding_mask = torch.full( |
|
(batch_size, seqlen_k), |
|
-10000.0, |
|
dtype=scores.dtype, |
|
device=scores.device, |
|
) |
|
padding_mask.masked_fill_(key_padding_mask, 0.0) |
|
|
|
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s") |
|
|
|
if causal: |
|
rows = rearrange(torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1") |
|
cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long) |
|
causal_mask = cols > rows + seqlen_k - seqlen_q |
|
|
|
scores = scores.masked_fill(causal_mask, -10000.0) |
|
|
|
attention = torch.softmax(scores, dim=-1).to(v.dtype) |
|
attention = self.drop(attention) |
|
|
|
output = torch.einsum("bhts,bshd->bthd", attention, v) |
|
|
|
return output |
|
|
|
|
|
def _find_mha_dims( |
|
config: PretrainedConfig, |
|
n_head: Optional[int] = None, |
|
n_head_kv: Optional[int] = None, |
|
head_dim: Optional[int] = None, |
|
) -> Tuple[int, int]: |
|
if n_head is None and head_dim is None: |
|
head_dim = config.n_embd // config.n_head |
|
n_head = config.n_head |
|
elif n_head is None or head_dim is None: |
|
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.") |
|
|
|
if n_head_kv is None: |
|
n_head_kv = getattr(config, "n_head_kv", None) or n_head |
|
|
|
return n_head, n_head_kv, head_dim |
|
|
|
|
|
def _update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int) -> torch.FloatTensor: |
|
num_heads, head_dim = kv.shape[-2:] |
|
|
|
if layer_idx not in inference_params.key_value_memory_dict: |
|
inference_params.key_value_memory_dict[layer_idx] = torch.empty( |
|
inference_params.max_batch_size, |
|
inference_params.max_seqlen, |
|
2, |
|
num_heads, |
|
head_dim, |
|
dtype=kv.dtype, |
|
device=kv.device, |
|
) |
|
|
|
batch_start = inference_params.batch_size_offset |
|
batch_end = batch_start + kv.shape[0] |
|
|
|
sequence_start = inference_params.seqlen_offset |
|
sequence_end = sequence_start + kv.shape[1] |
|
|
|
|
|
|
|
if sequence_end >= inference_params.max_seqlen: |
|
inference_params.key_value_memory_dict[layer_idx] = torch.concatenate((inference_params.key_value_memory_dict[layer_idx], kv), dim=1) |
|
|
|
inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, sequence_start:sequence_end, ...] = kv |
|
kv = inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, :sequence_end, ...] |
|
|
|
return kv |
|
|
|
|
|
class MHA(nn.Module): |
|
"""Multi-head attention layer.""" |
|
|
|
def __init__( |
|
self, |
|
config: PretrainedConfig, |
|
dtype: Optional[torch.dtype] = None, |
|
device: Optional[str] = None, |
|
rotary_dim: Optional[int] = None, |
|
rotary_base: float = 10000.0, |
|
rotary_scale_base: Optional[float] = None, |
|
n_head: Optional[int] = None, |
|
n_head_kv: Optional[int] = None, |
|
head_dim: Optional[int] = None, |
|
bias: bool = True, |
|
causal: bool = True, |
|
softmax_scale: Optional[float] = None, |
|
layer_idx: Optional[int] = None, |
|
return_residual: bool = False, |
|
checkpointing: bool = False, |
|
) -> None: |
|
super().__init__() |
|
|
|
|
|
self.rotary_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0) |
|
if self.rotary_dim > 0: |
|
rotary_cls = FlashRotaryEmbedding if config.flash_rotary else RotaryEmbedding |
|
if rotary_cls is None: |
|
rotary_cls = RotaryEmbedding |
|
|
|
rotary_kwargs = {} |
|
if rotary_cls is RotaryEmbedding: |
|
rotary_kwargs["max_position_embeddings"] = config.n_positions |
|
|
|
self.rotary_emb = rotary_cls( |
|
self.rotary_dim, |
|
base=rotary_base, |
|
scale_base=rotary_scale_base, |
|
device=device, |
|
**rotary_kwargs, |
|
) |
|
|
|
|
|
self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims( |
|
config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim |
|
) |
|
op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv) |
|
hidden_size = config.n_embd |
|
|
|
linear_cls = FusedDense if config.fused_dense else nn.Linear |
|
if linear_cls is None: |
|
linear_cls = nn.Linear |
|
|
|
self.Wqkv = linear_cls(hidden_size, op_size, bias=bias, device=device, dtype=dtype) |
|
self.out_proj = linear_cls(hidden_size, hidden_size, bias=bias, device=device, dtype=dtype) |
|
|
|
|
|
attn_cls = FlashSelfAttention if config.flash_attn else SelfAttention |
|
if attn_cls is None: |
|
attn_cls = SelfAttention |
|
|
|
cross_attn_cls = FlashCrossAttention if config.flash_attn else CrossAttention |
|
if cross_attn_cls is None: |
|
cross_attn_cls = CrossAttention |
|
|
|
self.inner_attn = attn_cls( |
|
causal=causal, |
|
softmax_scale=softmax_scale, |
|
attention_dropout=config.attn_pdrop, |
|
) |
|
self.inner_cross_attn = cross_attn_cls( |
|
causal=causal, |
|
softmax_scale=softmax_scale, |
|
attention_dropout=config.attn_pdrop, |
|
) |
|
|
|
self.flash_attn = config.flash_attn and attn_cls is FlashSelfAttention |
|
self.layer_idx = layer_idx |
|
self.return_residual = return_residual |
|
self.checkpointing = checkpointing |
|
|
|
def _forward_self_attn( |
|
self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor] |
|
) -> torch.FloatTensor: |
|
qkv = self.Wqkv(x) |
|
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim) |
|
|
|
if self.rotary_dim > 0: |
|
qkv = self.rotary_emb(qkv) |
|
|
|
if self.flash_attn: |
|
batch_size, seqlen = qkv.shape[0], qkv.shape[1] |
|
|
|
cu_seqlens, max_seqlen = None, None |
|
if key_padding_mask is not None: |
|
|
|
|
|
qkv, indices, cu_seqlens, max_seqlen = unpad_input(qkv, key_padding_mask) |
|
|
|
if self.checkpointing and self.training: |
|
attn_output = torch.utils.checkpoint.checkpoint( |
|
self.inner_attn, qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, use_reentrant=False |
|
) |
|
else: |
|
attn_output = self.inner_attn(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen).to(qkv.device) |
|
|
|
|
|
return pad_input(attn_output, indices, batch_size, seqlen) if key_padding_mask is not None else attn_output |
|
|
|
if self.checkpointing and self.training: |
|
return torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, key_padding_mask=key_padding_mask, use_reentrant=False) |
|
|
|
return self.inner_attn(qkv, key_padding_mask=key_padding_mask) |
|
|
|
def _forward_cross_attn( |
|
self, |
|
x: torch.FloatTensor, |
|
past_key_values: Optional[InferenceParams], |
|
key_padding_mask: Optional[torch.BoolTensor], |
|
) -> torch.FloatTensor: |
|
batch_size = x.shape[0] |
|
|
|
qkv = self.Wqkv(x) |
|
|
|
q = qkv[..., : self.n_head * self.head_dim] |
|
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim) |
|
|
|
kv = qkv[..., self.n_head * self.head_dim :] |
|
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim) |
|
|
|
seqlen_offset = past_key_values.seqlen_offset if past_key_values is not None else 0 |
|
causal = None if seqlen_offset == 0 else False |
|
if self.rotary_dim > 0: |
|
q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset) |
|
|
|
if past_key_values is not None: |
|
kv = _update_kv_cache(kv, past_key_values, self.layer_idx) |
|
|
|
if self.flash_attn: |
|
batch_size, seqlen_q = q.shape[0], q.shape[1] |
|
seqlen_k = kv.shape[1] |
|
|
|
cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k = ( |
|
None, |
|
None, |
|
None, |
|
None, |
|
) |
|
if key_padding_mask is not None: |
|
kv, _, cu_seqlens_k, max_seqlen_k = unpad_input(kv, key_padding_mask) |
|
|
|
if seqlen_q == 1: |
|
key_padding_mask = torch.ones(batch_size, 1, device=q.device) |
|
elif seqlen_q != seqlen_k: |
|
key_padding_mask = key_padding_mask[:, -seqlen_q:] |
|
|
|
q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, key_padding_mask) |
|
|
|
if self.checkpointing and self.training: |
|
attn_output = torch.utils.checkpoint.checkpoint( |
|
self.inner_cross_attn, |
|
q, |
|
kv, |
|
causal=causal, |
|
cu_seqlens=cu_seqlens_q, |
|
max_seqlen=max_seqlen_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_k=max_seqlen_k, |
|
use_reentrant=False |
|
) |
|
else: |
|
attn_output = self.inner_cross_attn( |
|
q, |
|
kv, |
|
causal=causal, |
|
cu_seqlens=cu_seqlens_q, |
|
max_seqlen=max_seqlen_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_k=max_seqlen_k, |
|
) |
|
|
|
return ( |
|
pad_input(attn_output, indices_q, batch_size, max_seqlen_q) |
|
if key_padding_mask is not None |
|
else attn_output |
|
) |
|
|
|
if self.checkpointing and self.training: |
|
return torch.utils.checkpoint.checkpoint( |
|
self.inner_cross_attn, |
|
q, |
|
kv, |
|
key_padding_mask=key_padding_mask, |
|
causal=causal, |
|
use_reentrant=False |
|
) |
|
|
|
return self.inner_cross_attn(q, kv, key_padding_mask=key_padding_mask, causal=causal) |
|
|
|
def forward( |
|
self, |
|
x: torch.FloatTensor, |
|
past_key_values: Optional[InferenceParams] = None, |
|
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, torch.FloatTensor]: |
|
if attention_mask is not None: |
|
attention_mask = attention_mask.bool() |
|
else: |
|
attention_mask = None |
|
|
|
|
|
if self.n_head == self.n_head_kv: |
|
if past_key_values is None: |
|
|
|
attn_output = self._forward_self_attn(x, attention_mask) |
|
else: |
|
|
|
|
|
attn_output = self._forward_cross_attn(x, past_key_values, attention_mask) |
|
|
|
else: |
|
|
|
|
|
attn_output = self._forward_cross_attn(x, past_key_values, attention_mask) |
|
|
|
output = rearrange(attn_output, "... h d -> ... (h d)") |
|
output = self.out_proj(output) |
|
|
|
return output if not self.return_residual else (output, x) |
|
|
|
|
|
class ParallelBlock(nn.Module): |
|
"""Parallel block. |
|
|
|
This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen). |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
config: PretrainedConfig, |
|
block_idx: Optional[int] = None, |
|
) -> None: |
|
super().__init__() |
|
|
|
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) |
|
self.resid_dropout = nn.Dropout(config.resid_pdrop) |
|
self.block_idx = block_idx |
|
|
|
self.mixer = MHA(config, layer_idx=block_idx) |
|
self.mlp = MLP(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, |
|
attention_mask: Optional[torch.BoolTensor] = None, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
residual = hidden_states |
|
hidden_states = self.ln(hidden_states) |
|
|
|
attn_outputs = self.mixer( |
|
hidden_states, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
) |
|
if isinstance(attn_outputs, tuple): |
|
attn_outputs = attn_outputs[0] |
|
|
|
attn_outputs = self.resid_dropout(attn_outputs) |
|
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states)) |
|
|
|
hidden_states = attn_outputs + feed_forward_hidden_states + residual |
|
|
|
return hidden_states |
|
|
|
|
|
class CausalLMHead(nn.Module): |
|
"""Causal Language Modeling head. |
|
|
|
Reference: |
|
Improving Language Understanding by Generative Pre-Training. |
|
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf. |
|
|
|
""" |
|
|
|
def __init__(self, config: PretrainedConfig) -> None: |
|
super().__init__() |
|
|
|
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) |
|
self.linear = nn.Linear(config.n_embd, config.vocab_size) |
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: |
|
hidden_states = self.ln(hidden_states) |
|
logits = self.linear(hidden_states).to(torch.float32) |
|
|
|
return logits |
|
|
|
|
|
class CausalLMLoss(nn.Module): |
|
"""Causal Language Modeling loss. |
|
|
|
Reference: |
|
Improving Language Understanding by Generative Pre-Training. |
|
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf. |
|
|
|
""" |
|
|
|
def __init__(self, shift_labels: bool = True) -> None: |
|
super().__init__() |
|
|
|
self.shift_labels = shift_labels |
|
self.loss_fct = nn.CrossEntropyLoss() |
|
|
|
def forward(self, logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor: |
|
if self.shift_labels: |
|
logits = logits[..., :-1, :].contiguous() |
|
labels = labels[..., 1:].contiguous() |
|
|
|
loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1)) |
|
|
|
return loss |
|
|
|
|
|
class PhiPreTrainedModel(PreTrainedModel): |
|
"""Phi pre-trained model.""" |
|
|
|
config_class = PhiConfig |
|
base_model_prefix = "transformer" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["ParallelBlock"] |
|
|
|
def __init__(self, *inputs, **kwargs) -> None: |
|
super().__init__(*inputs, **kwargs) |
|
|
|
def _init_weights(self, module: nn.Module) -> None: |
|
if isinstance(module, (nn.Linear,)): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, MHA): |
|
module.checkpointing = value |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, |
|
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None, |
|
**kwargs, |
|
) -> Dict[str, Any]: |
|
if past_key_values is None or not (isinstance(past_key_values, InferenceParams)): |
|
past_key_values = InferenceParams( |
|
max_seqlen=self.config.n_positions, |
|
max_batch_size=input_ids.shape[0], |
|
seqlen_offset=0, |
|
batch_size_offset=0, |
|
key_value_memory_dict={}, |
|
lengths_per_sample=None, |
|
) |
|
else: |
|
|
|
past_key_values.seqlen_offset = input_ids.shape[1] - 1 |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"past_key_values": past_key_values, |
|
"attention_mask": attention_mask, |
|
} |
|
|
|
|
|
class PhiModel(PhiPreTrainedModel): |
|
"""Phi model.""" |
|
|
|
_keys_to_ignore_on_load_missing = [""] |
|
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"] |
|
|
|
def __init__(self, config: PhiConfig) -> None: |
|
super().__init__(config) |
|
|
|
self.embd = Embedding(config) |
|
self.h = nn.ModuleList([ParallelBlock(config, block_idx=i) for i in range(config.n_layer)]) |
|
self.gradient_checkpointing = False |
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> nn.Embedding: |
|
return self.embd.wte |
|
|
|
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None: |
|
self.embd.wte = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, |
|
attention_mask: Optional[torch.BoolTensor] = None, |
|
) -> torch.FloatTensor: |
|
hidden_states = self.embd(input_ids) |
|
|
|
for layer in self.h: |
|
hidden_states = layer( |
|
hidden_states, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
) |
|
|
|
return hidden_states |
|
|
|
|
|
class PhiForCausalLM(PhiPreTrainedModel): |
|
"""Phi for Causal Language Modeling.""" |
|
|
|
_keys_to_ignore_on_load_missing = [""] |
|
_keys_to_ignore_on_load_unexpected = [r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"] |
|
|
|
def __init__(self, config: PhiConfig) -> None: |
|
super().__init__(config) |
|
|
|
self.transformer = PhiModel(config) |
|
self.lm_head = CausalLMHead(config) |
|
self.loss = CausalLMLoss() |
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self) -> nn.Linear: |
|
return self.lm_head.linear |
|
|
|
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None: |
|
self.lm_head.linear = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None, |
|
attention_mask: Optional[torch.BoolTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
) -> CausalLMOutputWithPast: |
|
hidden_states = self.transformer(input_ids, past_key_values=past_key_values, attention_mask=attention_mask) |
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss(lm_logits, labels) |
|
|
|
if self.config.output_hidden_states: |
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=past_key_values, |
|
hidden_states=hidden_states, |
|
) |
|
return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values) |
|
|