--- license: apache-2.0 base_model: facebook/convnextv2-tiny-1k-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision model-index: - name: convnextv2-tiny-1k-224-finetuned-crop-upperfull-mix results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8004385964912281 - name: Precision type: precision value: 0.8160100686256399 --- # convnextv2-tiny-1k-224-finetuned-crop-upperfull-mix This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6187 - Accuracy: 0.8004 - Precision: 0.8160 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:| | No log | 1.0 | 183 | 2.1471 | 0.4693 | 0.5128 | | No log | 2.0 | 366 | 1.4576 | 0.6579 | 0.6955 | | 1.9821 | 3.0 | 549 | 1.1372 | 0.6754 | 0.7183 | | 1.9821 | 4.0 | 732 | 0.9214 | 0.7303 | 0.7659 | | 1.9821 | 5.0 | 915 | 0.7792 | 0.7478 | 0.7661 | | 0.8885 | 6.0 | 1098 | 0.7455 | 0.7654 | 0.7780 | | 0.8885 | 7.0 | 1281 | 0.6756 | 0.7873 | 0.8020 | | 0.8885 | 8.0 | 1464 | 0.6787 | 0.7807 | 0.7932 | | 0.5696 | 9.0 | 1647 | 0.6694 | 0.7982 | 0.8099 | | 0.5696 | 10.0 | 1830 | 0.6799 | 0.7741 | 0.7930 | | 0.4056 | 11.0 | 2013 | 0.6187 | 0.8004 | 0.8160 | | 0.4056 | 12.0 | 2196 | 0.6868 | 0.7675 | 0.8063 | | 0.4056 | 13.0 | 2379 | 0.7525 | 0.7544 | 0.7803 | | 0.2904 | 14.0 | 2562 | 0.6572 | 0.7895 | 0.8093 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1