vishalkatheriya18
commited on
Commit
•
96712f3
1
Parent(s):
8ff07a9
End of training
Browse files- README.md +195 -0
- all_results.json +13 -0
- config.json +71 -0
- eval_results.json +8 -0
- model.safetensors +3 -0
- preprocessor_config.json +22 -0
- train_results.json +8 -0
- trainer_state.json +1944 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/convnextv2-tiny-1k-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: convnextv2-tiny-1k-224-finetuned-fullwear
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.8402777777777778
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# convnextv2-tiny-1k-224-finetuned-fullwear
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.5203
|
36 |
+
- Accuracy: 0.8403
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 32
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 128
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 120
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:--------:|:----:|:---------------:|:--------:|
|
70 |
+
| 2.4871 | 0.9756 | 10 | 2.4771 | 0.0694 |
|
71 |
+
| 2.4464 | 1.9512 | 20 | 2.4333 | 0.1528 |
|
72 |
+
| 2.3911 | 2.9268 | 30 | 2.3670 | 0.2778 |
|
73 |
+
| 2.3204 | 4.0 | 41 | 2.2617 | 0.3681 |
|
74 |
+
| 2.206 | 4.9756 | 51 | 2.1445 | 0.3958 |
|
75 |
+
| 2.0869 | 5.9512 | 61 | 2.0146 | 0.4444 |
|
76 |
+
| 1.9756 | 6.9268 | 71 | 1.8763 | 0.5139 |
|
77 |
+
| 1.8124 | 8.0 | 82 | 1.7422 | 0.5486 |
|
78 |
+
| 1.6624 | 8.9756 | 92 | 1.6629 | 0.5903 |
|
79 |
+
| 1.587 | 9.9512 | 102 | 1.5474 | 0.6111 |
|
80 |
+
| 1.4746 | 10.9268 | 112 | 1.4577 | 0.625 |
|
81 |
+
| 1.359 | 12.0 | 123 | 1.3055 | 0.6736 |
|
82 |
+
| 1.2412 | 12.9756 | 133 | 1.2241 | 0.6736 |
|
83 |
+
| 1.1374 | 13.9512 | 143 | 1.2003 | 0.6736 |
|
84 |
+
| 1.0194 | 14.9268 | 153 | 1.0233 | 0.7569 |
|
85 |
+
| 0.9705 | 16.0 | 164 | 0.9492 | 0.7847 |
|
86 |
+
| 0.8949 | 16.9756 | 174 | 0.9246 | 0.75 |
|
87 |
+
| 0.7959 | 17.9512 | 184 | 0.8148 | 0.7639 |
|
88 |
+
| 0.7491 | 18.9268 | 194 | 0.7858 | 0.7569 |
|
89 |
+
| 0.6783 | 20.0 | 205 | 0.8010 | 0.7569 |
|
90 |
+
| 0.6257 | 20.9756 | 215 | 0.7295 | 0.7847 |
|
91 |
+
| 0.5999 | 21.9512 | 225 | 0.6219 | 0.8333 |
|
92 |
+
| 0.5701 | 22.9268 | 235 | 0.5932 | 0.8403 |
|
93 |
+
| 0.4926 | 24.0 | 246 | 0.5970 | 0.8056 |
|
94 |
+
| 0.4692 | 24.9756 | 256 | 0.6298 | 0.8194 |
|
95 |
+
| 0.4393 | 25.9512 | 266 | 0.5857 | 0.8056 |
|
96 |
+
| 0.419 | 26.9268 | 276 | 0.5203 | 0.8542 |
|
97 |
+
| 0.3454 | 28.0 | 287 | 0.6084 | 0.8264 |
|
98 |
+
| 0.36 | 28.9756 | 297 | 0.5928 | 0.8264 |
|
99 |
+
| 0.3265 | 29.9512 | 307 | 0.5303 | 0.8403 |
|
100 |
+
| 0.3278 | 30.9268 | 317 | 0.6049 | 0.8194 |
|
101 |
+
| 0.2766 | 32.0 | 328 | 0.5656 | 0.8264 |
|
102 |
+
| 0.2805 | 32.9756 | 338 | 0.5003 | 0.8681 |
|
103 |
+
| 0.2505 | 33.9512 | 348 | 0.5412 | 0.8403 |
|
104 |
+
| 0.2464 | 34.9268 | 358 | 0.5410 | 0.8333 |
|
105 |
+
| 0.2166 | 36.0 | 369 | 0.5000 | 0.8472 |
|
106 |
+
| 0.2 | 36.9756 | 379 | 0.5053 | 0.8056 |
|
107 |
+
| 0.1914 | 37.9512 | 389 | 0.5161 | 0.8403 |
|
108 |
+
| 0.186 | 38.9268 | 399 | 0.4242 | 0.8681 |
|
109 |
+
| 0.1592 | 40.0 | 410 | 0.5059 | 0.8472 |
|
110 |
+
| 0.1598 | 40.9756 | 420 | 0.5143 | 0.8264 |
|
111 |
+
| 0.1565 | 41.9512 | 430 | 0.4703 | 0.8542 |
|
112 |
+
| 0.1598 | 42.9268 | 440 | 0.4384 | 0.8542 |
|
113 |
+
| 0.139 | 44.0 | 451 | 0.4850 | 0.8403 |
|
114 |
+
| 0.1137 | 44.9756 | 461 | 0.4405 | 0.8542 |
|
115 |
+
| 0.1158 | 45.9512 | 471 | 0.5250 | 0.8333 |
|
116 |
+
| 0.1192 | 46.9268 | 481 | 0.5843 | 0.8194 |
|
117 |
+
| 0.1271 | 48.0 | 492 | 0.4498 | 0.8611 |
|
118 |
+
| 0.0914 | 48.9756 | 502 | 0.5167 | 0.8264 |
|
119 |
+
| 0.1079 | 49.9512 | 512 | 0.4648 | 0.8681 |
|
120 |
+
| 0.091 | 50.9268 | 522 | 0.5321 | 0.8194 |
|
121 |
+
| 0.1053 | 52.0 | 533 | 0.4402 | 0.8611 |
|
122 |
+
| 0.0842 | 52.9756 | 543 | 0.4776 | 0.8542 |
|
123 |
+
| 0.0961 | 53.9512 | 553 | 0.4762 | 0.8681 |
|
124 |
+
| 0.0896 | 54.9268 | 563 | 0.4477 | 0.8681 |
|
125 |
+
| 0.0876 | 56.0 | 574 | 0.4951 | 0.8472 |
|
126 |
+
| 0.0855 | 56.9756 | 584 | 0.5653 | 0.8125 |
|
127 |
+
| 0.073 | 57.9512 | 594 | 0.5315 | 0.8472 |
|
128 |
+
| 0.0804 | 58.9268 | 604 | 0.5064 | 0.8681 |
|
129 |
+
| 0.0765 | 60.0 | 615 | 0.6316 | 0.8264 |
|
130 |
+
| 0.0782 | 60.9756 | 625 | 0.5733 | 0.8056 |
|
131 |
+
| 0.069 | 61.9512 | 635 | 0.6994 | 0.8056 |
|
132 |
+
| 0.0809 | 62.9268 | 645 | 0.4898 | 0.8611 |
|
133 |
+
| 0.0829 | 64.0 | 656 | 0.6042 | 0.8194 |
|
134 |
+
| 0.0735 | 64.9756 | 666 | 0.4758 | 0.8611 |
|
135 |
+
| 0.0763 | 65.9512 | 676 | 0.4921 | 0.8542 |
|
136 |
+
| 0.0565 | 66.9268 | 686 | 0.4700 | 0.8681 |
|
137 |
+
| 0.062 | 68.0 | 697 | 0.4944 | 0.8819 |
|
138 |
+
| 0.0644 | 68.9756 | 707 | 0.4733 | 0.8681 |
|
139 |
+
| 0.0659 | 69.9512 | 717 | 0.4703 | 0.8819 |
|
140 |
+
| 0.0625 | 70.9268 | 727 | 0.5075 | 0.8542 |
|
141 |
+
| 0.042 | 72.0 | 738 | 0.5464 | 0.8264 |
|
142 |
+
| 0.056 | 72.9756 | 748 | 0.5186 | 0.8333 |
|
143 |
+
| 0.0858 | 73.9512 | 758 | 0.5403 | 0.8264 |
|
144 |
+
| 0.0616 | 74.9268 | 768 | 0.5104 | 0.8472 |
|
145 |
+
| 0.0777 | 76.0 | 779 | 0.5516 | 0.8403 |
|
146 |
+
| 0.0668 | 76.9756 | 789 | 0.4918 | 0.8611 |
|
147 |
+
| 0.0585 | 77.9512 | 799 | 0.5692 | 0.8403 |
|
148 |
+
| 0.0562 | 78.9268 | 809 | 0.5734 | 0.8403 |
|
149 |
+
| 0.0653 | 80.0 | 820 | 0.5403 | 0.8264 |
|
150 |
+
| 0.0434 | 80.9756 | 830 | 0.5108 | 0.8333 |
|
151 |
+
| 0.0483 | 81.9512 | 840 | 0.5699 | 0.8125 |
|
152 |
+
| 0.0329 | 82.9268 | 850 | 0.6028 | 0.8056 |
|
153 |
+
| 0.0431 | 84.0 | 861 | 0.5230 | 0.8333 |
|
154 |
+
| 0.042 | 84.9756 | 871 | 0.5875 | 0.8194 |
|
155 |
+
| 0.0449 | 85.9512 | 881 | 0.5180 | 0.8611 |
|
156 |
+
| 0.0512 | 86.9268 | 891 | 0.5425 | 0.8194 |
|
157 |
+
| 0.0545 | 88.0 | 902 | 0.5690 | 0.8264 |
|
158 |
+
| 0.0496 | 88.9756 | 912 | 0.5619 | 0.8611 |
|
159 |
+
| 0.0449 | 89.9512 | 922 | 0.5626 | 0.8333 |
|
160 |
+
| 0.0405 | 90.9268 | 932 | 0.5267 | 0.8403 |
|
161 |
+
| 0.0344 | 92.0 | 943 | 0.5617 | 0.8403 |
|
162 |
+
| 0.0421 | 92.9756 | 953 | 0.5400 | 0.8611 |
|
163 |
+
| 0.0341 | 93.9512 | 963 | 0.5729 | 0.8333 |
|
164 |
+
| 0.0492 | 94.9268 | 973 | 0.5855 | 0.8056 |
|
165 |
+
| 0.0374 | 96.0 | 984 | 0.6113 | 0.8125 |
|
166 |
+
| 0.0375 | 96.9756 | 994 | 0.5511 | 0.8403 |
|
167 |
+
| 0.0373 | 97.9512 | 1004 | 0.4942 | 0.8542 |
|
168 |
+
| 0.0447 | 98.9268 | 1014 | 0.5031 | 0.8542 |
|
169 |
+
| 0.0519 | 100.0 | 1025 | 0.5349 | 0.8542 |
|
170 |
+
| 0.0387 | 100.9756 | 1035 | 0.5511 | 0.8542 |
|
171 |
+
| 0.0256 | 101.9512 | 1045 | 0.5319 | 0.8403 |
|
172 |
+
| 0.043 | 102.9268 | 1055 | 0.5605 | 0.8264 |
|
173 |
+
| 0.029 | 104.0 | 1066 | 0.5776 | 0.8403 |
|
174 |
+
| 0.0379 | 104.9756 | 1076 | 0.5697 | 0.8472 |
|
175 |
+
| 0.0445 | 105.9512 | 1086 | 0.5133 | 0.8681 |
|
176 |
+
| 0.0267 | 106.9268 | 1096 | 0.5076 | 0.8681 |
|
177 |
+
| 0.044 | 108.0 | 1107 | 0.5260 | 0.8403 |
|
178 |
+
| 0.0263 | 108.9756 | 1117 | 0.5101 | 0.8542 |
|
179 |
+
| 0.0247 | 109.9512 | 1127 | 0.4972 | 0.8542 |
|
180 |
+
| 0.0441 | 110.9268 | 1137 | 0.5094 | 0.8472 |
|
181 |
+
| 0.0263 | 112.0 | 1148 | 0.5259 | 0.8333 |
|
182 |
+
| 0.0247 | 112.9756 | 1158 | 0.5323 | 0.8403 |
|
183 |
+
| 0.0356 | 113.9512 | 1168 | 0.5275 | 0.8403 |
|
184 |
+
| 0.0297 | 114.9268 | 1178 | 0.5240 | 0.8333 |
|
185 |
+
| 0.044 | 116.0 | 1189 | 0.5201 | 0.8472 |
|
186 |
+
| 0.031 | 116.9756 | 1199 | 0.5203 | 0.8403 |
|
187 |
+
| 0.0369 | 117.0732 | 1200 | 0.5203 | 0.8403 |
|
188 |
+
|
189 |
+
|
190 |
+
### Framework versions
|
191 |
+
|
192 |
+
- Transformers 4.44.0
|
193 |
+
- Pytorch 2.4.0
|
194 |
+
- Datasets 2.21.0
|
195 |
+
- Tokenizers 0.19.1
|
all_results.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 117.07317073170732,
|
3 |
+
"eval_accuracy": 0.8402777777777778,
|
4 |
+
"eval_loss": 0.5202847123146057,
|
5 |
+
"eval_runtime": 3.1405,
|
6 |
+
"eval_samples_per_second": 45.852,
|
7 |
+
"eval_steps_per_second": 1.592,
|
8 |
+
"total_flos": 3.819974210196996e+18,
|
9 |
+
"train_loss": 0.3624983422954877,
|
10 |
+
"train_runtime": 4158.3882,
|
11 |
+
"train_samples_per_second": 37.399,
|
12 |
+
"train_steps_per_second": 0.289
|
13 |
+
}
|
config.json
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/convnextv2-tiny-1k-224",
|
3 |
+
"architectures": [
|
4 |
+
"ConvNextV2ForImageClassification"
|
5 |
+
],
|
6 |
+
"depths": [
|
7 |
+
3,
|
8 |
+
3,
|
9 |
+
9,
|
10 |
+
3
|
11 |
+
],
|
12 |
+
"drop_path_rate": 0.0,
|
13 |
+
"hidden_act": "gelu",
|
14 |
+
"hidden_sizes": [
|
15 |
+
96,
|
16 |
+
192,
|
17 |
+
384,
|
18 |
+
768
|
19 |
+
],
|
20 |
+
"id2label": {
|
21 |
+
"0": "Co_ords",
|
22 |
+
"1": "Kaftan",
|
23 |
+
"2": "anarkali",
|
24 |
+
"3": "cloaks_abaya",
|
25 |
+
"4": "dress",
|
26 |
+
"5": "dungaree",
|
27 |
+
"6": "ethnic",
|
28 |
+
"7": "gown",
|
29 |
+
"8": "jumpsuit",
|
30 |
+
"9": "robe",
|
31 |
+
"10": "salwar_suit",
|
32 |
+
"11": "saree"
|
33 |
+
},
|
34 |
+
"image_size": 224,
|
35 |
+
"initializer_range": 0.02,
|
36 |
+
"label2id": {
|
37 |
+
"Co_ords": 0,
|
38 |
+
"Kaftan": 1,
|
39 |
+
"anarkali": 2,
|
40 |
+
"cloaks_abaya": 3,
|
41 |
+
"dress": 4,
|
42 |
+
"dungaree": 5,
|
43 |
+
"ethnic": 6,
|
44 |
+
"gown": 7,
|
45 |
+
"jumpsuit": 8,
|
46 |
+
"robe": 9,
|
47 |
+
"salwar_suit": 10,
|
48 |
+
"saree": 11
|
49 |
+
},
|
50 |
+
"layer_norm_eps": 1e-12,
|
51 |
+
"model_type": "convnextv2",
|
52 |
+
"num_channels": 3,
|
53 |
+
"num_stages": 4,
|
54 |
+
"out_features": [
|
55 |
+
"stage4"
|
56 |
+
],
|
57 |
+
"out_indices": [
|
58 |
+
4
|
59 |
+
],
|
60 |
+
"patch_size": 4,
|
61 |
+
"problem_type": "single_label_classification",
|
62 |
+
"stage_names": [
|
63 |
+
"stem",
|
64 |
+
"stage1",
|
65 |
+
"stage2",
|
66 |
+
"stage3",
|
67 |
+
"stage4"
|
68 |
+
],
|
69 |
+
"torch_dtype": "float32",
|
70 |
+
"transformers_version": "4.44.0"
|
71 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 117.07317073170732,
|
3 |
+
"eval_accuracy": 0.8402777777777778,
|
4 |
+
"eval_loss": 0.5202847123146057,
|
5 |
+
"eval_runtime": 3.1405,
|
6 |
+
"eval_samples_per_second": 45.852,
|
7 |
+
"eval_steps_per_second": 1.592
|
8 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8800c431490f289e457718c9f52dffebdccfedd69f45c4922365a8a84a3b5788
|
3 |
+
size 111526592
|
preprocessor_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_pct": 0.875,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.485,
|
8 |
+
0.456,
|
9 |
+
0.406
|
10 |
+
],
|
11 |
+
"image_processor_type": "ConvNextImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.229,
|
14 |
+
0.224,
|
15 |
+
0.225
|
16 |
+
],
|
17 |
+
"resample": 3,
|
18 |
+
"rescale_factor": 0.00392156862745098,
|
19 |
+
"size": {
|
20 |
+
"shortest_edge": 224
|
21 |
+
}
|
22 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 117.07317073170732,
|
3 |
+
"total_flos": 3.819974210196996e+18,
|
4 |
+
"train_loss": 0.3624983422954877,
|
5 |
+
"train_runtime": 4158.3882,
|
6 |
+
"train_samples_per_second": 37.399,
|
7 |
+
"train_steps_per_second": 0.289
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1944 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 117.07317073170732,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1200,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.975609756097561,
|
13 |
+
"grad_norm": 3.532809257507324,
|
14 |
+
"learning_rate": 4.166666666666667e-06,
|
15 |
+
"loss": 2.4871,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.975609756097561,
|
20 |
+
"eval_accuracy": 0.06944444444444445,
|
21 |
+
"eval_loss": 2.4770686626434326,
|
22 |
+
"eval_runtime": 3.5274,
|
23 |
+
"eval_samples_per_second": 40.824,
|
24 |
+
"eval_steps_per_second": 1.417,
|
25 |
+
"step": 10
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"epoch": 1.951219512195122,
|
29 |
+
"grad_norm": 5.7173171043396,
|
30 |
+
"learning_rate": 8.333333333333334e-06,
|
31 |
+
"loss": 2.4464,
|
32 |
+
"step": 20
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 1.951219512195122,
|
36 |
+
"eval_accuracy": 0.1527777777777778,
|
37 |
+
"eval_loss": 2.4332642555236816,
|
38 |
+
"eval_runtime": 2.9731,
|
39 |
+
"eval_samples_per_second": 48.435,
|
40 |
+
"eval_steps_per_second": 1.682,
|
41 |
+
"step": 20
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"epoch": 2.926829268292683,
|
45 |
+
"grad_norm": 6.289983749389648,
|
46 |
+
"learning_rate": 1.25e-05,
|
47 |
+
"loss": 2.3911,
|
48 |
+
"step": 30
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"epoch": 2.926829268292683,
|
52 |
+
"eval_accuracy": 0.2777777777777778,
|
53 |
+
"eval_loss": 2.3669984340667725,
|
54 |
+
"eval_runtime": 2.9436,
|
55 |
+
"eval_samples_per_second": 48.919,
|
56 |
+
"eval_steps_per_second": 1.699,
|
57 |
+
"step": 30
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 3.902439024390244,
|
61 |
+
"grad_norm": 12.364039421081543,
|
62 |
+
"learning_rate": 1.6666666666666667e-05,
|
63 |
+
"loss": 2.3204,
|
64 |
+
"step": 40
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 4.0,
|
68 |
+
"eval_accuracy": 0.3680555555555556,
|
69 |
+
"eval_loss": 2.261659860610962,
|
70 |
+
"eval_runtime": 2.9933,
|
71 |
+
"eval_samples_per_second": 48.107,
|
72 |
+
"eval_steps_per_second": 1.67,
|
73 |
+
"step": 41
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 4.878048780487805,
|
77 |
+
"grad_norm": 14.902889251708984,
|
78 |
+
"learning_rate": 2.0833333333333336e-05,
|
79 |
+
"loss": 2.206,
|
80 |
+
"step": 50
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 4.975609756097561,
|
84 |
+
"eval_accuracy": 0.3958333333333333,
|
85 |
+
"eval_loss": 2.144454002380371,
|
86 |
+
"eval_runtime": 3.011,
|
87 |
+
"eval_samples_per_second": 47.824,
|
88 |
+
"eval_steps_per_second": 1.661,
|
89 |
+
"step": 51
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 5.853658536585366,
|
93 |
+
"grad_norm": 17.006898880004883,
|
94 |
+
"learning_rate": 2.5e-05,
|
95 |
+
"loss": 2.0869,
|
96 |
+
"step": 60
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"epoch": 5.951219512195122,
|
100 |
+
"eval_accuracy": 0.4444444444444444,
|
101 |
+
"eval_loss": 2.0146427154541016,
|
102 |
+
"eval_runtime": 3.0417,
|
103 |
+
"eval_samples_per_second": 47.342,
|
104 |
+
"eval_steps_per_second": 1.644,
|
105 |
+
"step": 61
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 6.829268292682927,
|
109 |
+
"grad_norm": 42.38038635253906,
|
110 |
+
"learning_rate": 2.916666666666667e-05,
|
111 |
+
"loss": 1.9756,
|
112 |
+
"step": 70
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"epoch": 6.926829268292683,
|
116 |
+
"eval_accuracy": 0.5138888888888888,
|
117 |
+
"eval_loss": 1.8763340711593628,
|
118 |
+
"eval_runtime": 3.096,
|
119 |
+
"eval_samples_per_second": 46.512,
|
120 |
+
"eval_steps_per_second": 1.615,
|
121 |
+
"step": 71
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 7.804878048780488,
|
125 |
+
"grad_norm": 26.403841018676758,
|
126 |
+
"learning_rate": 3.3333333333333335e-05,
|
127 |
+
"loss": 1.8124,
|
128 |
+
"step": 80
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 8.0,
|
132 |
+
"eval_accuracy": 0.5486111111111112,
|
133 |
+
"eval_loss": 1.7422140836715698,
|
134 |
+
"eval_runtime": 3.1203,
|
135 |
+
"eval_samples_per_second": 46.15,
|
136 |
+
"eval_steps_per_second": 1.602,
|
137 |
+
"step": 82
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 8.78048780487805,
|
141 |
+
"grad_norm": 38.676876068115234,
|
142 |
+
"learning_rate": 3.7500000000000003e-05,
|
143 |
+
"loss": 1.6624,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 8.975609756097562,
|
148 |
+
"eval_accuracy": 0.5902777777777778,
|
149 |
+
"eval_loss": 1.6628881692886353,
|
150 |
+
"eval_runtime": 3.1378,
|
151 |
+
"eval_samples_per_second": 45.893,
|
152 |
+
"eval_steps_per_second": 1.593,
|
153 |
+
"step": 92
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 9.75609756097561,
|
157 |
+
"grad_norm": 25.14325523376465,
|
158 |
+
"learning_rate": 4.166666666666667e-05,
|
159 |
+
"loss": 1.587,
|
160 |
+
"step": 100
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"epoch": 9.951219512195122,
|
164 |
+
"eval_accuracy": 0.6111111111111112,
|
165 |
+
"eval_loss": 1.547376036643982,
|
166 |
+
"eval_runtime": 3.0786,
|
167 |
+
"eval_samples_per_second": 46.774,
|
168 |
+
"eval_steps_per_second": 1.624,
|
169 |
+
"step": 102
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"epoch": 10.731707317073171,
|
173 |
+
"grad_norm": 59.02862548828125,
|
174 |
+
"learning_rate": 4.5833333333333334e-05,
|
175 |
+
"loss": 1.4746,
|
176 |
+
"step": 110
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 10.926829268292684,
|
180 |
+
"eval_accuracy": 0.625,
|
181 |
+
"eval_loss": 1.4577171802520752,
|
182 |
+
"eval_runtime": 3.0847,
|
183 |
+
"eval_samples_per_second": 46.683,
|
184 |
+
"eval_steps_per_second": 1.621,
|
185 |
+
"step": 112
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 11.707317073170731,
|
189 |
+
"grad_norm": 39.518768310546875,
|
190 |
+
"learning_rate": 5e-05,
|
191 |
+
"loss": 1.359,
|
192 |
+
"step": 120
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 12.0,
|
196 |
+
"eval_accuracy": 0.6736111111111112,
|
197 |
+
"eval_loss": 1.30553138256073,
|
198 |
+
"eval_runtime": 3.1033,
|
199 |
+
"eval_samples_per_second": 46.403,
|
200 |
+
"eval_steps_per_second": 1.611,
|
201 |
+
"step": 123
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 12.682926829268293,
|
205 |
+
"grad_norm": 41.855445861816406,
|
206 |
+
"learning_rate": 4.9537037037037035e-05,
|
207 |
+
"loss": 1.2412,
|
208 |
+
"step": 130
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"epoch": 12.975609756097562,
|
212 |
+
"eval_accuracy": 0.6736111111111112,
|
213 |
+
"eval_loss": 1.2240564823150635,
|
214 |
+
"eval_runtime": 3.1092,
|
215 |
+
"eval_samples_per_second": 46.314,
|
216 |
+
"eval_steps_per_second": 1.608,
|
217 |
+
"step": 133
|
218 |
+
},
|
219 |
+
{
|
220 |
+
"epoch": 13.658536585365853,
|
221 |
+
"grad_norm": 14.434544563293457,
|
222 |
+
"learning_rate": 4.9074074074074075e-05,
|
223 |
+
"loss": 1.1374,
|
224 |
+
"step": 140
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 13.951219512195122,
|
228 |
+
"eval_accuracy": 0.6736111111111112,
|
229 |
+
"eval_loss": 1.2003458738327026,
|
230 |
+
"eval_runtime": 3.1022,
|
231 |
+
"eval_samples_per_second": 46.419,
|
232 |
+
"eval_steps_per_second": 1.612,
|
233 |
+
"step": 143
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 14.634146341463415,
|
237 |
+
"grad_norm": 51.862064361572266,
|
238 |
+
"learning_rate": 4.8611111111111115e-05,
|
239 |
+
"loss": 1.0194,
|
240 |
+
"step": 150
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 14.926829268292684,
|
244 |
+
"eval_accuracy": 0.7569444444444444,
|
245 |
+
"eval_loss": 1.0233235359191895,
|
246 |
+
"eval_runtime": 3.1109,
|
247 |
+
"eval_samples_per_second": 46.288,
|
248 |
+
"eval_steps_per_second": 1.607,
|
249 |
+
"step": 153
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 15.609756097560975,
|
253 |
+
"grad_norm": 59.053375244140625,
|
254 |
+
"learning_rate": 4.814814814814815e-05,
|
255 |
+
"loss": 0.9705,
|
256 |
+
"step": 160
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 16.0,
|
260 |
+
"eval_accuracy": 0.7847222222222222,
|
261 |
+
"eval_loss": 0.9492360353469849,
|
262 |
+
"eval_runtime": 3.0962,
|
263 |
+
"eval_samples_per_second": 46.509,
|
264 |
+
"eval_steps_per_second": 1.615,
|
265 |
+
"step": 164
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"epoch": 16.585365853658537,
|
269 |
+
"grad_norm": 23.618066787719727,
|
270 |
+
"learning_rate": 4.768518518518519e-05,
|
271 |
+
"loss": 0.8949,
|
272 |
+
"step": 170
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 16.975609756097562,
|
276 |
+
"eval_accuracy": 0.75,
|
277 |
+
"eval_loss": 0.9246302843093872,
|
278 |
+
"eval_runtime": 3.3666,
|
279 |
+
"eval_samples_per_second": 42.773,
|
280 |
+
"eval_steps_per_second": 1.485,
|
281 |
+
"step": 174
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 17.5609756097561,
|
285 |
+
"grad_norm": 37.61671447753906,
|
286 |
+
"learning_rate": 4.722222222222222e-05,
|
287 |
+
"loss": 0.7959,
|
288 |
+
"step": 180
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"epoch": 17.951219512195124,
|
292 |
+
"eval_accuracy": 0.7638888888888888,
|
293 |
+
"eval_loss": 0.8147740960121155,
|
294 |
+
"eval_runtime": 3.1586,
|
295 |
+
"eval_samples_per_second": 45.589,
|
296 |
+
"eval_steps_per_second": 1.583,
|
297 |
+
"step": 184
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 18.536585365853657,
|
301 |
+
"grad_norm": 22.54252052307129,
|
302 |
+
"learning_rate": 4.675925925925926e-05,
|
303 |
+
"loss": 0.7491,
|
304 |
+
"step": 190
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 18.926829268292682,
|
308 |
+
"eval_accuracy": 0.7569444444444444,
|
309 |
+
"eval_loss": 0.785780668258667,
|
310 |
+
"eval_runtime": 3.1126,
|
311 |
+
"eval_samples_per_second": 46.264,
|
312 |
+
"eval_steps_per_second": 1.606,
|
313 |
+
"step": 194
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"epoch": 19.51219512195122,
|
317 |
+
"grad_norm": 73.11436462402344,
|
318 |
+
"learning_rate": 4.62962962962963e-05,
|
319 |
+
"loss": 0.6783,
|
320 |
+
"step": 200
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 20.0,
|
324 |
+
"eval_accuracy": 0.7569444444444444,
|
325 |
+
"eval_loss": 0.8010105490684509,
|
326 |
+
"eval_runtime": 3.0934,
|
327 |
+
"eval_samples_per_second": 46.55,
|
328 |
+
"eval_steps_per_second": 1.616,
|
329 |
+
"step": 205
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 20.48780487804878,
|
333 |
+
"grad_norm": 25.613719940185547,
|
334 |
+
"learning_rate": 4.5833333333333334e-05,
|
335 |
+
"loss": 0.6257,
|
336 |
+
"step": 210
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"epoch": 20.975609756097562,
|
340 |
+
"eval_accuracy": 0.7847222222222222,
|
341 |
+
"eval_loss": 0.7294739484786987,
|
342 |
+
"eval_runtime": 3.0855,
|
343 |
+
"eval_samples_per_second": 46.67,
|
344 |
+
"eval_steps_per_second": 1.62,
|
345 |
+
"step": 215
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 21.463414634146343,
|
349 |
+
"grad_norm": 21.02585220336914,
|
350 |
+
"learning_rate": 4.5370370370370374e-05,
|
351 |
+
"loss": 0.5999,
|
352 |
+
"step": 220
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 21.951219512195124,
|
356 |
+
"eval_accuracy": 0.8333333333333334,
|
357 |
+
"eval_loss": 0.6218506097793579,
|
358 |
+
"eval_runtime": 3.0821,
|
359 |
+
"eval_samples_per_second": 46.722,
|
360 |
+
"eval_steps_per_second": 1.622,
|
361 |
+
"step": 225
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 22.4390243902439,
|
365 |
+
"grad_norm": 24.335525512695312,
|
366 |
+
"learning_rate": 4.490740740740741e-05,
|
367 |
+
"loss": 0.5701,
|
368 |
+
"step": 230
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 22.926829268292682,
|
372 |
+
"eval_accuracy": 0.8402777777777778,
|
373 |
+
"eval_loss": 0.5932477116584778,
|
374 |
+
"eval_runtime": 3.1062,
|
375 |
+
"eval_samples_per_second": 46.359,
|
376 |
+
"eval_steps_per_second": 1.61,
|
377 |
+
"step": 235
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 23.414634146341463,
|
381 |
+
"grad_norm": 25.651668548583984,
|
382 |
+
"learning_rate": 4.4444444444444447e-05,
|
383 |
+
"loss": 0.4926,
|
384 |
+
"step": 240
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 24.0,
|
388 |
+
"eval_accuracy": 0.8055555555555556,
|
389 |
+
"eval_loss": 0.5970398783683777,
|
390 |
+
"eval_runtime": 3.1225,
|
391 |
+
"eval_samples_per_second": 46.116,
|
392 |
+
"eval_steps_per_second": 1.601,
|
393 |
+
"step": 246
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 24.390243902439025,
|
397 |
+
"grad_norm": 46.76804733276367,
|
398 |
+
"learning_rate": 4.3981481481481486e-05,
|
399 |
+
"loss": 0.4692,
|
400 |
+
"step": 250
|
401 |
+
},
|
402 |
+
{
|
403 |
+
"epoch": 24.975609756097562,
|
404 |
+
"eval_accuracy": 0.8194444444444444,
|
405 |
+
"eval_loss": 0.6297520995140076,
|
406 |
+
"eval_runtime": 3.3496,
|
407 |
+
"eval_samples_per_second": 42.99,
|
408 |
+
"eval_steps_per_second": 1.493,
|
409 |
+
"step": 256
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 25.365853658536587,
|
413 |
+
"grad_norm": 28.9127140045166,
|
414 |
+
"learning_rate": 4.351851851851852e-05,
|
415 |
+
"loss": 0.4393,
|
416 |
+
"step": 260
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 25.951219512195124,
|
420 |
+
"eval_accuracy": 0.8055555555555556,
|
421 |
+
"eval_loss": 0.5856587886810303,
|
422 |
+
"eval_runtime": 3.1545,
|
423 |
+
"eval_samples_per_second": 45.648,
|
424 |
+
"eval_steps_per_second": 1.585,
|
425 |
+
"step": 266
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 26.341463414634145,
|
429 |
+
"grad_norm": 18.964569091796875,
|
430 |
+
"learning_rate": 4.305555555555556e-05,
|
431 |
+
"loss": 0.419,
|
432 |
+
"step": 270
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"epoch": 26.926829268292682,
|
436 |
+
"eval_accuracy": 0.8541666666666666,
|
437 |
+
"eval_loss": 0.5202641487121582,
|
438 |
+
"eval_runtime": 3.0877,
|
439 |
+
"eval_samples_per_second": 46.637,
|
440 |
+
"eval_steps_per_second": 1.619,
|
441 |
+
"step": 276
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 27.317073170731707,
|
445 |
+
"grad_norm": 27.72169303894043,
|
446 |
+
"learning_rate": 4.259259259259259e-05,
|
447 |
+
"loss": 0.3454,
|
448 |
+
"step": 280
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"epoch": 28.0,
|
452 |
+
"eval_accuracy": 0.8263888888888888,
|
453 |
+
"eval_loss": 0.6083860397338867,
|
454 |
+
"eval_runtime": 3.1332,
|
455 |
+
"eval_samples_per_second": 45.959,
|
456 |
+
"eval_steps_per_second": 1.596,
|
457 |
+
"step": 287
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 28.29268292682927,
|
461 |
+
"grad_norm": 34.03929138183594,
|
462 |
+
"learning_rate": 4.212962962962963e-05,
|
463 |
+
"loss": 0.36,
|
464 |
+
"step": 290
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 28.975609756097562,
|
468 |
+
"eval_accuracy": 0.8263888888888888,
|
469 |
+
"eval_loss": 0.5927634835243225,
|
470 |
+
"eval_runtime": 3.105,
|
471 |
+
"eval_samples_per_second": 46.377,
|
472 |
+
"eval_steps_per_second": 1.61,
|
473 |
+
"step": 297
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 29.26829268292683,
|
477 |
+
"grad_norm": 12.895988464355469,
|
478 |
+
"learning_rate": 4.166666666666667e-05,
|
479 |
+
"loss": 0.3265,
|
480 |
+
"step": 300
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"epoch": 29.951219512195124,
|
484 |
+
"eval_accuracy": 0.8402777777777778,
|
485 |
+
"eval_loss": 0.5302631855010986,
|
486 |
+
"eval_runtime": 3.1155,
|
487 |
+
"eval_samples_per_second": 46.22,
|
488 |
+
"eval_steps_per_second": 1.605,
|
489 |
+
"step": 307
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 30.24390243902439,
|
493 |
+
"grad_norm": 25.50472640991211,
|
494 |
+
"learning_rate": 4.1203703703703705e-05,
|
495 |
+
"loss": 0.3278,
|
496 |
+
"step": 310
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 30.926829268292682,
|
500 |
+
"eval_accuracy": 0.8194444444444444,
|
501 |
+
"eval_loss": 0.6049231886863708,
|
502 |
+
"eval_runtime": 3.093,
|
503 |
+
"eval_samples_per_second": 46.557,
|
504 |
+
"eval_steps_per_second": 1.617,
|
505 |
+
"step": 317
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"epoch": 31.21951219512195,
|
509 |
+
"grad_norm": 24.565650939941406,
|
510 |
+
"learning_rate": 4.074074074074074e-05,
|
511 |
+
"loss": 0.2766,
|
512 |
+
"step": 320
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 32.0,
|
516 |
+
"eval_accuracy": 0.8263888888888888,
|
517 |
+
"eval_loss": 0.5656167268753052,
|
518 |
+
"eval_runtime": 3.1109,
|
519 |
+
"eval_samples_per_second": 46.289,
|
520 |
+
"eval_steps_per_second": 1.607,
|
521 |
+
"step": 328
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 32.19512195121951,
|
525 |
+
"grad_norm": 55.43843460083008,
|
526 |
+
"learning_rate": 4.027777777777778e-05,
|
527 |
+
"loss": 0.2805,
|
528 |
+
"step": 330
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 32.97560975609756,
|
532 |
+
"eval_accuracy": 0.8680555555555556,
|
533 |
+
"eval_loss": 0.500336229801178,
|
534 |
+
"eval_runtime": 3.0516,
|
535 |
+
"eval_samples_per_second": 47.188,
|
536 |
+
"eval_steps_per_second": 1.638,
|
537 |
+
"step": 338
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 33.170731707317074,
|
541 |
+
"grad_norm": 21.027912139892578,
|
542 |
+
"learning_rate": 3.981481481481482e-05,
|
543 |
+
"loss": 0.2505,
|
544 |
+
"step": 340
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"epoch": 33.951219512195124,
|
548 |
+
"eval_accuracy": 0.8402777777777778,
|
549 |
+
"eval_loss": 0.5412003397941589,
|
550 |
+
"eval_runtime": 2.9972,
|
551 |
+
"eval_samples_per_second": 48.044,
|
552 |
+
"eval_steps_per_second": 1.668,
|
553 |
+
"step": 348
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"epoch": 34.146341463414636,
|
557 |
+
"grad_norm": 15.519696235656738,
|
558 |
+
"learning_rate": 3.935185185185186e-05,
|
559 |
+
"loss": 0.2464,
|
560 |
+
"step": 350
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 34.926829268292686,
|
564 |
+
"eval_accuracy": 0.8333333333333334,
|
565 |
+
"eval_loss": 0.5409752130508423,
|
566 |
+
"eval_runtime": 3.024,
|
567 |
+
"eval_samples_per_second": 47.62,
|
568 |
+
"eval_steps_per_second": 1.653,
|
569 |
+
"step": 358
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 35.1219512195122,
|
573 |
+
"grad_norm": 24.68006134033203,
|
574 |
+
"learning_rate": 3.888888888888889e-05,
|
575 |
+
"loss": 0.2166,
|
576 |
+
"step": 360
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 36.0,
|
580 |
+
"eval_accuracy": 0.8472222222222222,
|
581 |
+
"eval_loss": 0.499971866607666,
|
582 |
+
"eval_runtime": 2.9993,
|
583 |
+
"eval_samples_per_second": 48.011,
|
584 |
+
"eval_steps_per_second": 1.667,
|
585 |
+
"step": 369
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 36.09756097560975,
|
589 |
+
"grad_norm": 16.784454345703125,
|
590 |
+
"learning_rate": 3.8425925925925924e-05,
|
591 |
+
"loss": 0.2,
|
592 |
+
"step": 370
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"epoch": 36.97560975609756,
|
596 |
+
"eval_accuracy": 0.8055555555555556,
|
597 |
+
"eval_loss": 0.5053013563156128,
|
598 |
+
"eval_runtime": 2.9731,
|
599 |
+
"eval_samples_per_second": 48.435,
|
600 |
+
"eval_steps_per_second": 1.682,
|
601 |
+
"step": 379
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 37.073170731707314,
|
605 |
+
"grad_norm": 16.091339111328125,
|
606 |
+
"learning_rate": 3.7962962962962964e-05,
|
607 |
+
"loss": 0.1914,
|
608 |
+
"step": 380
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 37.951219512195124,
|
612 |
+
"eval_accuracy": 0.8402777777777778,
|
613 |
+
"eval_loss": 0.5161268711090088,
|
614 |
+
"eval_runtime": 3.0408,
|
615 |
+
"eval_samples_per_second": 47.356,
|
616 |
+
"eval_steps_per_second": 1.644,
|
617 |
+
"step": 389
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"epoch": 38.048780487804876,
|
621 |
+
"grad_norm": 19.708166122436523,
|
622 |
+
"learning_rate": 3.7500000000000003e-05,
|
623 |
+
"loss": 0.186,
|
624 |
+
"step": 390
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 38.926829268292686,
|
628 |
+
"eval_accuracy": 0.8680555555555556,
|
629 |
+
"eval_loss": 0.42421483993530273,
|
630 |
+
"eval_runtime": 3.0128,
|
631 |
+
"eval_samples_per_second": 47.796,
|
632 |
+
"eval_steps_per_second": 1.66,
|
633 |
+
"step": 399
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 39.02439024390244,
|
637 |
+
"grad_norm": 18.210954666137695,
|
638 |
+
"learning_rate": 3.7037037037037037e-05,
|
639 |
+
"loss": 0.1767,
|
640 |
+
"step": 400
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 40.0,
|
644 |
+
"grad_norm": 12.815789222717285,
|
645 |
+
"learning_rate": 3.6574074074074076e-05,
|
646 |
+
"loss": 0.1592,
|
647 |
+
"step": 410
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 40.0,
|
651 |
+
"eval_accuracy": 0.8472222222222222,
|
652 |
+
"eval_loss": 0.5058771967887878,
|
653 |
+
"eval_runtime": 3.0381,
|
654 |
+
"eval_samples_per_second": 47.399,
|
655 |
+
"eval_steps_per_second": 1.646,
|
656 |
+
"step": 410
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 40.97560975609756,
|
660 |
+
"grad_norm": 17.878015518188477,
|
661 |
+
"learning_rate": 3.611111111111111e-05,
|
662 |
+
"loss": 0.1598,
|
663 |
+
"step": 420
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 40.97560975609756,
|
667 |
+
"eval_accuracy": 0.8263888888888888,
|
668 |
+
"eval_loss": 0.5143249034881592,
|
669 |
+
"eval_runtime": 3.2074,
|
670 |
+
"eval_samples_per_second": 44.896,
|
671 |
+
"eval_steps_per_second": 1.559,
|
672 |
+
"step": 420
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"epoch": 41.951219512195124,
|
676 |
+
"grad_norm": 18.464937210083008,
|
677 |
+
"learning_rate": 3.564814814814815e-05,
|
678 |
+
"loss": 0.1565,
|
679 |
+
"step": 430
|
680 |
+
},
|
681 |
+
{
|
682 |
+
"epoch": 41.951219512195124,
|
683 |
+
"eval_accuracy": 0.8541666666666666,
|
684 |
+
"eval_loss": 0.47032684087753296,
|
685 |
+
"eval_runtime": 3.4622,
|
686 |
+
"eval_samples_per_second": 41.592,
|
687 |
+
"eval_steps_per_second": 1.444,
|
688 |
+
"step": 430
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 42.926829268292686,
|
692 |
+
"grad_norm": 21.608076095581055,
|
693 |
+
"learning_rate": 3.518518518518519e-05,
|
694 |
+
"loss": 0.1598,
|
695 |
+
"step": 440
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 42.926829268292686,
|
699 |
+
"eval_accuracy": 0.8541666666666666,
|
700 |
+
"eval_loss": 0.4383782148361206,
|
701 |
+
"eval_runtime": 3.2144,
|
702 |
+
"eval_samples_per_second": 44.798,
|
703 |
+
"eval_steps_per_second": 1.555,
|
704 |
+
"step": 440
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 43.90243902439025,
|
708 |
+
"grad_norm": 16.986896514892578,
|
709 |
+
"learning_rate": 3.472222222222222e-05,
|
710 |
+
"loss": 0.139,
|
711 |
+
"step": 450
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 44.0,
|
715 |
+
"eval_accuracy": 0.8402777777777778,
|
716 |
+
"eval_loss": 0.48497942090034485,
|
717 |
+
"eval_runtime": 3.1916,
|
718 |
+
"eval_samples_per_second": 45.118,
|
719 |
+
"eval_steps_per_second": 1.567,
|
720 |
+
"step": 451
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"epoch": 44.8780487804878,
|
724 |
+
"grad_norm": 10.322036743164062,
|
725 |
+
"learning_rate": 3.425925925925926e-05,
|
726 |
+
"loss": 0.1137,
|
727 |
+
"step": 460
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"epoch": 44.97560975609756,
|
731 |
+
"eval_accuracy": 0.8541666666666666,
|
732 |
+
"eval_loss": 0.4405103623867035,
|
733 |
+
"eval_runtime": 3.1456,
|
734 |
+
"eval_samples_per_second": 45.778,
|
735 |
+
"eval_steps_per_second": 1.59,
|
736 |
+
"step": 461
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 45.853658536585364,
|
740 |
+
"grad_norm": 24.03445053100586,
|
741 |
+
"learning_rate": 3.3796296296296295e-05,
|
742 |
+
"loss": 0.1158,
|
743 |
+
"step": 470
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"epoch": 45.951219512195124,
|
747 |
+
"eval_accuracy": 0.8333333333333334,
|
748 |
+
"eval_loss": 0.5250218510627747,
|
749 |
+
"eval_runtime": 3.2289,
|
750 |
+
"eval_samples_per_second": 44.597,
|
751 |
+
"eval_steps_per_second": 1.549,
|
752 |
+
"step": 471
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 46.829268292682926,
|
756 |
+
"grad_norm": 19.822120666503906,
|
757 |
+
"learning_rate": 3.3333333333333335e-05,
|
758 |
+
"loss": 0.1192,
|
759 |
+
"step": 480
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 46.926829268292686,
|
763 |
+
"eval_accuracy": 0.8194444444444444,
|
764 |
+
"eval_loss": 0.5843467116355896,
|
765 |
+
"eval_runtime": 3.1862,
|
766 |
+
"eval_samples_per_second": 45.195,
|
767 |
+
"eval_steps_per_second": 1.569,
|
768 |
+
"step": 481
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"epoch": 47.80487804878049,
|
772 |
+
"grad_norm": 14.12452220916748,
|
773 |
+
"learning_rate": 3.2870370370370375e-05,
|
774 |
+
"loss": 0.1271,
|
775 |
+
"step": 490
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"epoch": 48.0,
|
779 |
+
"eval_accuracy": 0.8611111111111112,
|
780 |
+
"eval_loss": 0.44981643557548523,
|
781 |
+
"eval_runtime": 3.0999,
|
782 |
+
"eval_samples_per_second": 46.453,
|
783 |
+
"eval_steps_per_second": 1.613,
|
784 |
+
"step": 492
|
785 |
+
},
|
786 |
+
{
|
787 |
+
"epoch": 48.78048780487805,
|
788 |
+
"grad_norm": 12.838052749633789,
|
789 |
+
"learning_rate": 3.240740740740741e-05,
|
790 |
+
"loss": 0.0914,
|
791 |
+
"step": 500
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"epoch": 48.97560975609756,
|
795 |
+
"eval_accuracy": 0.8263888888888888,
|
796 |
+
"eval_loss": 0.5166668891906738,
|
797 |
+
"eval_runtime": 3.2195,
|
798 |
+
"eval_samples_per_second": 44.728,
|
799 |
+
"eval_steps_per_second": 1.553,
|
800 |
+
"step": 502
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 49.75609756097561,
|
804 |
+
"grad_norm": 20.458118438720703,
|
805 |
+
"learning_rate": 3.194444444444444e-05,
|
806 |
+
"loss": 0.1079,
|
807 |
+
"step": 510
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 49.951219512195124,
|
811 |
+
"eval_accuracy": 0.8680555555555556,
|
812 |
+
"eval_loss": 0.46484246850013733,
|
813 |
+
"eval_runtime": 3.1773,
|
814 |
+
"eval_samples_per_second": 45.322,
|
815 |
+
"eval_steps_per_second": 1.574,
|
816 |
+
"step": 512
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 50.73170731707317,
|
820 |
+
"grad_norm": 20.558439254760742,
|
821 |
+
"learning_rate": 3.148148148148148e-05,
|
822 |
+
"loss": 0.091,
|
823 |
+
"step": 520
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"epoch": 50.926829268292686,
|
827 |
+
"eval_accuracy": 0.8194444444444444,
|
828 |
+
"eval_loss": 0.5321457386016846,
|
829 |
+
"eval_runtime": 3.1291,
|
830 |
+
"eval_samples_per_second": 46.02,
|
831 |
+
"eval_steps_per_second": 1.598,
|
832 |
+
"step": 522
|
833 |
+
},
|
834 |
+
{
|
835 |
+
"epoch": 51.707317073170735,
|
836 |
+
"grad_norm": 11.692161560058594,
|
837 |
+
"learning_rate": 3.101851851851852e-05,
|
838 |
+
"loss": 0.1053,
|
839 |
+
"step": 530
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 52.0,
|
843 |
+
"eval_accuracy": 0.8611111111111112,
|
844 |
+
"eval_loss": 0.4402025043964386,
|
845 |
+
"eval_runtime": 3.1245,
|
846 |
+
"eval_samples_per_second": 46.087,
|
847 |
+
"eval_steps_per_second": 1.6,
|
848 |
+
"step": 533
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 52.68292682926829,
|
852 |
+
"grad_norm": 8.12877082824707,
|
853 |
+
"learning_rate": 3.055555555555556e-05,
|
854 |
+
"loss": 0.0842,
|
855 |
+
"step": 540
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 52.97560975609756,
|
859 |
+
"eval_accuracy": 0.8541666666666666,
|
860 |
+
"eval_loss": 0.477556437253952,
|
861 |
+
"eval_runtime": 3.1029,
|
862 |
+
"eval_samples_per_second": 46.408,
|
863 |
+
"eval_steps_per_second": 1.611,
|
864 |
+
"step": 543
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 53.65853658536585,
|
868 |
+
"grad_norm": 21.6231746673584,
|
869 |
+
"learning_rate": 3.0092592592592593e-05,
|
870 |
+
"loss": 0.0961,
|
871 |
+
"step": 550
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 53.951219512195124,
|
875 |
+
"eval_accuracy": 0.8680555555555556,
|
876 |
+
"eval_loss": 0.4761970341205597,
|
877 |
+
"eval_runtime": 3.0897,
|
878 |
+
"eval_samples_per_second": 46.607,
|
879 |
+
"eval_steps_per_second": 1.618,
|
880 |
+
"step": 553
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"epoch": 54.63414634146341,
|
884 |
+
"grad_norm": 22.6603946685791,
|
885 |
+
"learning_rate": 2.962962962962963e-05,
|
886 |
+
"loss": 0.0896,
|
887 |
+
"step": 560
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 54.926829268292686,
|
891 |
+
"eval_accuracy": 0.8680555555555556,
|
892 |
+
"eval_loss": 0.4477081894874573,
|
893 |
+
"eval_runtime": 3.1158,
|
894 |
+
"eval_samples_per_second": 46.216,
|
895 |
+
"eval_steps_per_second": 1.605,
|
896 |
+
"step": 563
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 55.609756097560975,
|
900 |
+
"grad_norm": 20.613056182861328,
|
901 |
+
"learning_rate": 2.916666666666667e-05,
|
902 |
+
"loss": 0.0876,
|
903 |
+
"step": 570
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 56.0,
|
907 |
+
"eval_accuracy": 0.8472222222222222,
|
908 |
+
"eval_loss": 0.49506622552871704,
|
909 |
+
"eval_runtime": 3.1109,
|
910 |
+
"eval_samples_per_second": 46.289,
|
911 |
+
"eval_steps_per_second": 1.607,
|
912 |
+
"step": 574
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 56.58536585365854,
|
916 |
+
"grad_norm": 15.108587265014648,
|
917 |
+
"learning_rate": 2.8703703703703706e-05,
|
918 |
+
"loss": 0.0855,
|
919 |
+
"step": 580
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 56.97560975609756,
|
923 |
+
"eval_accuracy": 0.8125,
|
924 |
+
"eval_loss": 0.565302312374115,
|
925 |
+
"eval_runtime": 3.3057,
|
926 |
+
"eval_samples_per_second": 43.562,
|
927 |
+
"eval_steps_per_second": 1.513,
|
928 |
+
"step": 584
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 57.5609756097561,
|
932 |
+
"grad_norm": 14.336268424987793,
|
933 |
+
"learning_rate": 2.824074074074074e-05,
|
934 |
+
"loss": 0.073,
|
935 |
+
"step": 590
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 57.951219512195124,
|
939 |
+
"eval_accuracy": 0.8472222222222222,
|
940 |
+
"eval_loss": 0.5314738750457764,
|
941 |
+
"eval_runtime": 3.1166,
|
942 |
+
"eval_samples_per_second": 46.205,
|
943 |
+
"eval_steps_per_second": 1.604,
|
944 |
+
"step": 594
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 58.53658536585366,
|
948 |
+
"grad_norm": 31.659631729125977,
|
949 |
+
"learning_rate": 2.777777777777778e-05,
|
950 |
+
"loss": 0.0804,
|
951 |
+
"step": 600
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 58.926829268292686,
|
955 |
+
"eval_accuracy": 0.8680555555555556,
|
956 |
+
"eval_loss": 0.5064035058021545,
|
957 |
+
"eval_runtime": 3.1077,
|
958 |
+
"eval_samples_per_second": 46.336,
|
959 |
+
"eval_steps_per_second": 1.609,
|
960 |
+
"step": 604
|
961 |
+
},
|
962 |
+
{
|
963 |
+
"epoch": 59.51219512195122,
|
964 |
+
"grad_norm": 6.317721366882324,
|
965 |
+
"learning_rate": 2.7314814814814816e-05,
|
966 |
+
"loss": 0.0765,
|
967 |
+
"step": 610
|
968 |
+
},
|
969 |
+
{
|
970 |
+
"epoch": 60.0,
|
971 |
+
"eval_accuracy": 0.8263888888888888,
|
972 |
+
"eval_loss": 0.63160640001297,
|
973 |
+
"eval_runtime": 3.0861,
|
974 |
+
"eval_samples_per_second": 46.661,
|
975 |
+
"eval_steps_per_second": 1.62,
|
976 |
+
"step": 615
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 60.48780487804878,
|
980 |
+
"grad_norm": 41.102962493896484,
|
981 |
+
"learning_rate": 2.6851851851851855e-05,
|
982 |
+
"loss": 0.0782,
|
983 |
+
"step": 620
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 60.97560975609756,
|
987 |
+
"eval_accuracy": 0.8055555555555556,
|
988 |
+
"eval_loss": 0.5733475089073181,
|
989 |
+
"eval_runtime": 3.1325,
|
990 |
+
"eval_samples_per_second": 45.97,
|
991 |
+
"eval_steps_per_second": 1.596,
|
992 |
+
"step": 625
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 61.46341463414634,
|
996 |
+
"grad_norm": 6.797872066497803,
|
997 |
+
"learning_rate": 2.6388888888888892e-05,
|
998 |
+
"loss": 0.069,
|
999 |
+
"step": 630
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 61.951219512195124,
|
1003 |
+
"eval_accuracy": 0.8055555555555556,
|
1004 |
+
"eval_loss": 0.6994370222091675,
|
1005 |
+
"eval_runtime": 3.1742,
|
1006 |
+
"eval_samples_per_second": 45.365,
|
1007 |
+
"eval_steps_per_second": 1.575,
|
1008 |
+
"step": 635
|
1009 |
+
},
|
1010 |
+
{
|
1011 |
+
"epoch": 62.4390243902439,
|
1012 |
+
"grad_norm": 9.439558029174805,
|
1013 |
+
"learning_rate": 2.5925925925925925e-05,
|
1014 |
+
"loss": 0.0809,
|
1015 |
+
"step": 640
|
1016 |
+
},
|
1017 |
+
{
|
1018 |
+
"epoch": 62.926829268292686,
|
1019 |
+
"eval_accuracy": 0.8611111111111112,
|
1020 |
+
"eval_loss": 0.48975637555122375,
|
1021 |
+
"eval_runtime": 3.1035,
|
1022 |
+
"eval_samples_per_second": 46.4,
|
1023 |
+
"eval_steps_per_second": 1.611,
|
1024 |
+
"step": 645
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 63.41463414634146,
|
1028 |
+
"grad_norm": 23.557085037231445,
|
1029 |
+
"learning_rate": 2.5462962962962965e-05,
|
1030 |
+
"loss": 0.0829,
|
1031 |
+
"step": 650
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 64.0,
|
1035 |
+
"eval_accuracy": 0.8194444444444444,
|
1036 |
+
"eval_loss": 0.6042267680168152,
|
1037 |
+
"eval_runtime": 3.0922,
|
1038 |
+
"eval_samples_per_second": 46.569,
|
1039 |
+
"eval_steps_per_second": 1.617,
|
1040 |
+
"step": 656
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 64.39024390243902,
|
1044 |
+
"grad_norm": 5.313930511474609,
|
1045 |
+
"learning_rate": 2.5e-05,
|
1046 |
+
"loss": 0.0735,
|
1047 |
+
"step": 660
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 64.97560975609755,
|
1051 |
+
"eval_accuracy": 0.8611111111111112,
|
1052 |
+
"eval_loss": 0.4758368730545044,
|
1053 |
+
"eval_runtime": 3.1221,
|
1054 |
+
"eval_samples_per_second": 46.122,
|
1055 |
+
"eval_steps_per_second": 1.601,
|
1056 |
+
"step": 666
|
1057 |
+
},
|
1058 |
+
{
|
1059 |
+
"epoch": 65.36585365853658,
|
1060 |
+
"grad_norm": 21.385704040527344,
|
1061 |
+
"learning_rate": 2.4537037037037038e-05,
|
1062 |
+
"loss": 0.0763,
|
1063 |
+
"step": 670
|
1064 |
+
},
|
1065 |
+
{
|
1066 |
+
"epoch": 65.95121951219512,
|
1067 |
+
"eval_accuracy": 0.8541666666666666,
|
1068 |
+
"eval_loss": 0.4920533001422882,
|
1069 |
+
"eval_runtime": 3.0958,
|
1070 |
+
"eval_samples_per_second": 46.514,
|
1071 |
+
"eval_steps_per_second": 1.615,
|
1072 |
+
"step": 676
|
1073 |
+
},
|
1074 |
+
{
|
1075 |
+
"epoch": 66.34146341463415,
|
1076 |
+
"grad_norm": 5.922763347625732,
|
1077 |
+
"learning_rate": 2.4074074074074074e-05,
|
1078 |
+
"loss": 0.0565,
|
1079 |
+
"step": 680
|
1080 |
+
},
|
1081 |
+
{
|
1082 |
+
"epoch": 66.92682926829268,
|
1083 |
+
"eval_accuracy": 0.8680555555555556,
|
1084 |
+
"eval_loss": 0.47003433108329773,
|
1085 |
+
"eval_runtime": 3.0115,
|
1086 |
+
"eval_samples_per_second": 47.816,
|
1087 |
+
"eval_steps_per_second": 1.66,
|
1088 |
+
"step": 686
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 67.3170731707317,
|
1092 |
+
"grad_norm": 8.859350204467773,
|
1093 |
+
"learning_rate": 2.361111111111111e-05,
|
1094 |
+
"loss": 0.062,
|
1095 |
+
"step": 690
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 68.0,
|
1099 |
+
"eval_accuracy": 0.8819444444444444,
|
1100 |
+
"eval_loss": 0.49443933367729187,
|
1101 |
+
"eval_runtime": 3.0558,
|
1102 |
+
"eval_samples_per_second": 47.123,
|
1103 |
+
"eval_steps_per_second": 1.636,
|
1104 |
+
"step": 697
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 68.29268292682927,
|
1108 |
+
"grad_norm": 11.291411399841309,
|
1109 |
+
"learning_rate": 2.314814814814815e-05,
|
1110 |
+
"loss": 0.0644,
|
1111 |
+
"step": 700
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"epoch": 68.97560975609755,
|
1115 |
+
"eval_accuracy": 0.8680555555555556,
|
1116 |
+
"eval_loss": 0.47334182262420654,
|
1117 |
+
"eval_runtime": 3.1099,
|
1118 |
+
"eval_samples_per_second": 46.303,
|
1119 |
+
"eval_steps_per_second": 1.608,
|
1120 |
+
"step": 707
|
1121 |
+
},
|
1122 |
+
{
|
1123 |
+
"epoch": 69.26829268292683,
|
1124 |
+
"grad_norm": 4.428774356842041,
|
1125 |
+
"learning_rate": 2.2685185185185187e-05,
|
1126 |
+
"loss": 0.0659,
|
1127 |
+
"step": 710
|
1128 |
+
},
|
1129 |
+
{
|
1130 |
+
"epoch": 69.95121951219512,
|
1131 |
+
"eval_accuracy": 0.8819444444444444,
|
1132 |
+
"eval_loss": 0.4702872037887573,
|
1133 |
+
"eval_runtime": 3.1595,
|
1134 |
+
"eval_samples_per_second": 45.577,
|
1135 |
+
"eval_steps_per_second": 1.583,
|
1136 |
+
"step": 717
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 70.2439024390244,
|
1140 |
+
"grad_norm": 20.887792587280273,
|
1141 |
+
"learning_rate": 2.2222222222222223e-05,
|
1142 |
+
"loss": 0.0625,
|
1143 |
+
"step": 720
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 70.92682926829268,
|
1147 |
+
"eval_accuracy": 0.8541666666666666,
|
1148 |
+
"eval_loss": 0.5075345635414124,
|
1149 |
+
"eval_runtime": 3.1136,
|
1150 |
+
"eval_samples_per_second": 46.248,
|
1151 |
+
"eval_steps_per_second": 1.606,
|
1152 |
+
"step": 727
|
1153 |
+
},
|
1154 |
+
{
|
1155 |
+
"epoch": 71.21951219512195,
|
1156 |
+
"grad_norm": 7.4120917320251465,
|
1157 |
+
"learning_rate": 2.175925925925926e-05,
|
1158 |
+
"loss": 0.042,
|
1159 |
+
"step": 730
|
1160 |
+
},
|
1161 |
+
{
|
1162 |
+
"epoch": 72.0,
|
1163 |
+
"eval_accuracy": 0.8263888888888888,
|
1164 |
+
"eval_loss": 0.5463792085647583,
|
1165 |
+
"eval_runtime": 3.1979,
|
1166 |
+
"eval_samples_per_second": 45.029,
|
1167 |
+
"eval_steps_per_second": 1.564,
|
1168 |
+
"step": 738
|
1169 |
+
},
|
1170 |
+
{
|
1171 |
+
"epoch": 72.1951219512195,
|
1172 |
+
"grad_norm": 4.7453532218933105,
|
1173 |
+
"learning_rate": 2.1296296296296296e-05,
|
1174 |
+
"loss": 0.056,
|
1175 |
+
"step": 740
|
1176 |
+
},
|
1177 |
+
{
|
1178 |
+
"epoch": 72.97560975609755,
|
1179 |
+
"eval_accuracy": 0.8333333333333334,
|
1180 |
+
"eval_loss": 0.5185548067092896,
|
1181 |
+
"eval_runtime": 3.2157,
|
1182 |
+
"eval_samples_per_second": 44.78,
|
1183 |
+
"eval_steps_per_second": 1.555,
|
1184 |
+
"step": 748
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 73.17073170731707,
|
1188 |
+
"grad_norm": 40.11507034301758,
|
1189 |
+
"learning_rate": 2.0833333333333336e-05,
|
1190 |
+
"loss": 0.0858,
|
1191 |
+
"step": 750
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 73.95121951219512,
|
1195 |
+
"eval_accuracy": 0.8263888888888888,
|
1196 |
+
"eval_loss": 0.5403424501419067,
|
1197 |
+
"eval_runtime": 3.1711,
|
1198 |
+
"eval_samples_per_second": 45.41,
|
1199 |
+
"eval_steps_per_second": 1.577,
|
1200 |
+
"step": 758
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"epoch": 74.14634146341463,
|
1204 |
+
"grad_norm": 21.469833374023438,
|
1205 |
+
"learning_rate": 2.037037037037037e-05,
|
1206 |
+
"loss": 0.0616,
|
1207 |
+
"step": 760
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 74.92682926829268,
|
1211 |
+
"eval_accuracy": 0.8472222222222222,
|
1212 |
+
"eval_loss": 0.5104292631149292,
|
1213 |
+
"eval_runtime": 3.1108,
|
1214 |
+
"eval_samples_per_second": 46.29,
|
1215 |
+
"eval_steps_per_second": 1.607,
|
1216 |
+
"step": 768
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 75.1219512195122,
|
1220 |
+
"grad_norm": 17.34604263305664,
|
1221 |
+
"learning_rate": 1.990740740740741e-05,
|
1222 |
+
"loss": 0.0777,
|
1223 |
+
"step": 770
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 76.0,
|
1227 |
+
"eval_accuracy": 0.8402777777777778,
|
1228 |
+
"eval_loss": 0.5515955686569214,
|
1229 |
+
"eval_runtime": 3.0985,
|
1230 |
+
"eval_samples_per_second": 46.474,
|
1231 |
+
"eval_steps_per_second": 1.614,
|
1232 |
+
"step": 779
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 76.09756097560975,
|
1236 |
+
"grad_norm": 25.844533920288086,
|
1237 |
+
"learning_rate": 1.9444444444444445e-05,
|
1238 |
+
"loss": 0.0668,
|
1239 |
+
"step": 780
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 76.97560975609755,
|
1243 |
+
"eval_accuracy": 0.8611111111111112,
|
1244 |
+
"eval_loss": 0.49184906482696533,
|
1245 |
+
"eval_runtime": 3.1523,
|
1246 |
+
"eval_samples_per_second": 45.68,
|
1247 |
+
"eval_steps_per_second": 1.586,
|
1248 |
+
"step": 789
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 77.07317073170732,
|
1252 |
+
"grad_norm": 3.816899299621582,
|
1253 |
+
"learning_rate": 1.8981481481481482e-05,
|
1254 |
+
"loss": 0.0585,
|
1255 |
+
"step": 790
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 77.95121951219512,
|
1259 |
+
"eval_accuracy": 0.8402777777777778,
|
1260 |
+
"eval_loss": 0.5692147612571716,
|
1261 |
+
"eval_runtime": 3.1238,
|
1262 |
+
"eval_samples_per_second": 46.098,
|
1263 |
+
"eval_steps_per_second": 1.601,
|
1264 |
+
"step": 799
|
1265 |
+
},
|
1266 |
+
{
|
1267 |
+
"epoch": 78.04878048780488,
|
1268 |
+
"grad_norm": 1.5959941148757935,
|
1269 |
+
"learning_rate": 1.8518518518518518e-05,
|
1270 |
+
"loss": 0.0562,
|
1271 |
+
"step": 800
|
1272 |
+
},
|
1273 |
+
{
|
1274 |
+
"epoch": 78.92682926829268,
|
1275 |
+
"eval_accuracy": 0.8402777777777778,
|
1276 |
+
"eval_loss": 0.5733731389045715,
|
1277 |
+
"eval_runtime": 3.161,
|
1278 |
+
"eval_samples_per_second": 45.556,
|
1279 |
+
"eval_steps_per_second": 1.582,
|
1280 |
+
"step": 809
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 79.02439024390245,
|
1284 |
+
"grad_norm": 8.219141960144043,
|
1285 |
+
"learning_rate": 1.8055555555555555e-05,
|
1286 |
+
"loss": 0.067,
|
1287 |
+
"step": 810
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 80.0,
|
1291 |
+
"grad_norm": 15.953410148620605,
|
1292 |
+
"learning_rate": 1.7592592592592595e-05,
|
1293 |
+
"loss": 0.0653,
|
1294 |
+
"step": 820
|
1295 |
+
},
|
1296 |
+
{
|
1297 |
+
"epoch": 80.0,
|
1298 |
+
"eval_accuracy": 0.8263888888888888,
|
1299 |
+
"eval_loss": 0.5403192639350891,
|
1300 |
+
"eval_runtime": 3.2805,
|
1301 |
+
"eval_samples_per_second": 43.896,
|
1302 |
+
"eval_steps_per_second": 1.524,
|
1303 |
+
"step": 820
|
1304 |
+
},
|
1305 |
+
{
|
1306 |
+
"epoch": 80.97560975609755,
|
1307 |
+
"grad_norm": 6.4320783615112305,
|
1308 |
+
"learning_rate": 1.712962962962963e-05,
|
1309 |
+
"loss": 0.0434,
|
1310 |
+
"step": 830
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"epoch": 80.97560975609755,
|
1314 |
+
"eval_accuracy": 0.8333333333333334,
|
1315 |
+
"eval_loss": 0.5107588171958923,
|
1316 |
+
"eval_runtime": 3.1353,
|
1317 |
+
"eval_samples_per_second": 45.929,
|
1318 |
+
"eval_steps_per_second": 1.595,
|
1319 |
+
"step": 830
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 81.95121951219512,
|
1323 |
+
"grad_norm": 4.175785064697266,
|
1324 |
+
"learning_rate": 1.6666666666666667e-05,
|
1325 |
+
"loss": 0.0483,
|
1326 |
+
"step": 840
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"epoch": 81.95121951219512,
|
1330 |
+
"eval_accuracy": 0.8125,
|
1331 |
+
"eval_loss": 0.5699278712272644,
|
1332 |
+
"eval_runtime": 3.084,
|
1333 |
+
"eval_samples_per_second": 46.693,
|
1334 |
+
"eval_steps_per_second": 1.621,
|
1335 |
+
"step": 840
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 82.92682926829268,
|
1339 |
+
"grad_norm": 7.429763317108154,
|
1340 |
+
"learning_rate": 1.6203703703703704e-05,
|
1341 |
+
"loss": 0.0329,
|
1342 |
+
"step": 850
|
1343 |
+
},
|
1344 |
+
{
|
1345 |
+
"epoch": 82.92682926829268,
|
1346 |
+
"eval_accuracy": 0.8055555555555556,
|
1347 |
+
"eval_loss": 0.6027733087539673,
|
1348 |
+
"eval_runtime": 3.1234,
|
1349 |
+
"eval_samples_per_second": 46.104,
|
1350 |
+
"eval_steps_per_second": 1.601,
|
1351 |
+
"step": 850
|
1352 |
+
},
|
1353 |
+
{
|
1354 |
+
"epoch": 83.90243902439025,
|
1355 |
+
"grad_norm": 5.646729946136475,
|
1356 |
+
"learning_rate": 1.574074074074074e-05,
|
1357 |
+
"loss": 0.0431,
|
1358 |
+
"step": 860
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 84.0,
|
1362 |
+
"eval_accuracy": 0.8333333333333334,
|
1363 |
+
"eval_loss": 0.5230019092559814,
|
1364 |
+
"eval_runtime": 3.1681,
|
1365 |
+
"eval_samples_per_second": 45.453,
|
1366 |
+
"eval_steps_per_second": 1.578,
|
1367 |
+
"step": 861
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 84.8780487804878,
|
1371 |
+
"grad_norm": 4.747640132904053,
|
1372 |
+
"learning_rate": 1.527777777777778e-05,
|
1373 |
+
"loss": 0.042,
|
1374 |
+
"step": 870
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 84.97560975609755,
|
1378 |
+
"eval_accuracy": 0.8194444444444444,
|
1379 |
+
"eval_loss": 0.5875388979911804,
|
1380 |
+
"eval_runtime": 3.1311,
|
1381 |
+
"eval_samples_per_second": 45.99,
|
1382 |
+
"eval_steps_per_second": 1.597,
|
1383 |
+
"step": 871
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"epoch": 85.85365853658537,
|
1387 |
+
"grad_norm": 7.094844341278076,
|
1388 |
+
"learning_rate": 1.4814814814814815e-05,
|
1389 |
+
"loss": 0.0449,
|
1390 |
+
"step": 880
|
1391 |
+
},
|
1392 |
+
{
|
1393 |
+
"epoch": 85.95121951219512,
|
1394 |
+
"eval_accuracy": 0.8611111111111112,
|
1395 |
+
"eval_loss": 0.5179998278617859,
|
1396 |
+
"eval_runtime": 3.1291,
|
1397 |
+
"eval_samples_per_second": 46.02,
|
1398 |
+
"eval_steps_per_second": 1.598,
|
1399 |
+
"step": 881
|
1400 |
+
},
|
1401 |
+
{
|
1402 |
+
"epoch": 86.82926829268293,
|
1403 |
+
"grad_norm": 9.338136672973633,
|
1404 |
+
"learning_rate": 1.4351851851851853e-05,
|
1405 |
+
"loss": 0.0512,
|
1406 |
+
"step": 890
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 86.92682926829268,
|
1410 |
+
"eval_accuracy": 0.8194444444444444,
|
1411 |
+
"eval_loss": 0.5425156354904175,
|
1412 |
+
"eval_runtime": 3.1587,
|
1413 |
+
"eval_samples_per_second": 45.588,
|
1414 |
+
"eval_steps_per_second": 1.583,
|
1415 |
+
"step": 891
|
1416 |
+
},
|
1417 |
+
{
|
1418 |
+
"epoch": 87.8048780487805,
|
1419 |
+
"grad_norm": 20.005054473876953,
|
1420 |
+
"learning_rate": 1.388888888888889e-05,
|
1421 |
+
"loss": 0.0545,
|
1422 |
+
"step": 900
|
1423 |
+
},
|
1424 |
+
{
|
1425 |
+
"epoch": 88.0,
|
1426 |
+
"eval_accuracy": 0.8263888888888888,
|
1427 |
+
"eval_loss": 0.5689591765403748,
|
1428 |
+
"eval_runtime": 3.1184,
|
1429 |
+
"eval_samples_per_second": 46.177,
|
1430 |
+
"eval_steps_per_second": 1.603,
|
1431 |
+
"step": 902
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 88.78048780487805,
|
1435 |
+
"grad_norm": 6.419548034667969,
|
1436 |
+
"learning_rate": 1.3425925925925928e-05,
|
1437 |
+
"loss": 0.0496,
|
1438 |
+
"step": 910
|
1439 |
+
},
|
1440 |
+
{
|
1441 |
+
"epoch": 88.97560975609755,
|
1442 |
+
"eval_accuracy": 0.8611111111111112,
|
1443 |
+
"eval_loss": 0.5619076490402222,
|
1444 |
+
"eval_runtime": 3.1196,
|
1445 |
+
"eval_samples_per_second": 46.16,
|
1446 |
+
"eval_steps_per_second": 1.603,
|
1447 |
+
"step": 912
|
1448 |
+
},
|
1449 |
+
{
|
1450 |
+
"epoch": 89.7560975609756,
|
1451 |
+
"grad_norm": 4.659784317016602,
|
1452 |
+
"learning_rate": 1.2962962962962962e-05,
|
1453 |
+
"loss": 0.0449,
|
1454 |
+
"step": 920
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 89.95121951219512,
|
1458 |
+
"eval_accuracy": 0.8333333333333334,
|
1459 |
+
"eval_loss": 0.5625645518302917,
|
1460 |
+
"eval_runtime": 3.1196,
|
1461 |
+
"eval_samples_per_second": 46.16,
|
1462 |
+
"eval_steps_per_second": 1.603,
|
1463 |
+
"step": 922
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 90.73170731707317,
|
1467 |
+
"grad_norm": 10.376348495483398,
|
1468 |
+
"learning_rate": 1.25e-05,
|
1469 |
+
"loss": 0.0405,
|
1470 |
+
"step": 930
|
1471 |
+
},
|
1472 |
+
{
|
1473 |
+
"epoch": 90.92682926829268,
|
1474 |
+
"eval_accuracy": 0.8402777777777778,
|
1475 |
+
"eval_loss": 0.526747465133667,
|
1476 |
+
"eval_runtime": 3.1368,
|
1477 |
+
"eval_samples_per_second": 45.906,
|
1478 |
+
"eval_steps_per_second": 1.594,
|
1479 |
+
"step": 932
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 91.70731707317073,
|
1483 |
+
"grad_norm": 1.9461939334869385,
|
1484 |
+
"learning_rate": 1.2037037037037037e-05,
|
1485 |
+
"loss": 0.0344,
|
1486 |
+
"step": 940
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 92.0,
|
1490 |
+
"eval_accuracy": 0.8402777777777778,
|
1491 |
+
"eval_loss": 0.5616637468338013,
|
1492 |
+
"eval_runtime": 3.1356,
|
1493 |
+
"eval_samples_per_second": 45.925,
|
1494 |
+
"eval_steps_per_second": 1.595,
|
1495 |
+
"step": 943
|
1496 |
+
},
|
1497 |
+
{
|
1498 |
+
"epoch": 92.6829268292683,
|
1499 |
+
"grad_norm": 6.943029880523682,
|
1500 |
+
"learning_rate": 1.1574074074074075e-05,
|
1501 |
+
"loss": 0.0421,
|
1502 |
+
"step": 950
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 92.97560975609755,
|
1506 |
+
"eval_accuracy": 0.8611111111111112,
|
1507 |
+
"eval_loss": 0.5399531126022339,
|
1508 |
+
"eval_runtime": 3.1511,
|
1509 |
+
"eval_samples_per_second": 45.698,
|
1510 |
+
"eval_steps_per_second": 1.587,
|
1511 |
+
"step": 953
|
1512 |
+
},
|
1513 |
+
{
|
1514 |
+
"epoch": 93.65853658536585,
|
1515 |
+
"grad_norm": 3.614881753921509,
|
1516 |
+
"learning_rate": 1.1111111111111112e-05,
|
1517 |
+
"loss": 0.0341,
|
1518 |
+
"step": 960
|
1519 |
+
},
|
1520 |
+
{
|
1521 |
+
"epoch": 93.95121951219512,
|
1522 |
+
"eval_accuracy": 0.8333333333333334,
|
1523 |
+
"eval_loss": 0.5728729963302612,
|
1524 |
+
"eval_runtime": 3.1618,
|
1525 |
+
"eval_samples_per_second": 45.544,
|
1526 |
+
"eval_steps_per_second": 1.581,
|
1527 |
+
"step": 963
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 94.63414634146342,
|
1531 |
+
"grad_norm": 24.69358253479004,
|
1532 |
+
"learning_rate": 1.0648148148148148e-05,
|
1533 |
+
"loss": 0.0492,
|
1534 |
+
"step": 970
|
1535 |
+
},
|
1536 |
+
{
|
1537 |
+
"epoch": 94.92682926829268,
|
1538 |
+
"eval_accuracy": 0.8055555555555556,
|
1539 |
+
"eval_loss": 0.5855351686477661,
|
1540 |
+
"eval_runtime": 3.1608,
|
1541 |
+
"eval_samples_per_second": 45.559,
|
1542 |
+
"eval_steps_per_second": 1.582,
|
1543 |
+
"step": 973
|
1544 |
+
},
|
1545 |
+
{
|
1546 |
+
"epoch": 95.60975609756098,
|
1547 |
+
"grad_norm": 7.931139945983887,
|
1548 |
+
"learning_rate": 1.0185185185185185e-05,
|
1549 |
+
"loss": 0.0374,
|
1550 |
+
"step": 980
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 96.0,
|
1554 |
+
"eval_accuracy": 0.8125,
|
1555 |
+
"eval_loss": 0.6113177537918091,
|
1556 |
+
"eval_runtime": 2.99,
|
1557 |
+
"eval_samples_per_second": 48.161,
|
1558 |
+
"eval_steps_per_second": 1.672,
|
1559 |
+
"step": 984
|
1560 |
+
},
|
1561 |
+
{
|
1562 |
+
"epoch": 96.58536585365853,
|
1563 |
+
"grad_norm": 7.854911804199219,
|
1564 |
+
"learning_rate": 9.722222222222223e-06,
|
1565 |
+
"loss": 0.0375,
|
1566 |
+
"step": 990
|
1567 |
+
},
|
1568 |
+
{
|
1569 |
+
"epoch": 96.97560975609755,
|
1570 |
+
"eval_accuracy": 0.8402777777777778,
|
1571 |
+
"eval_loss": 0.5511393547058105,
|
1572 |
+
"eval_runtime": 3.0799,
|
1573 |
+
"eval_samples_per_second": 46.755,
|
1574 |
+
"eval_steps_per_second": 1.623,
|
1575 |
+
"step": 994
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"epoch": 97.5609756097561,
|
1579 |
+
"grad_norm": 19.6168270111084,
|
1580 |
+
"learning_rate": 9.259259259259259e-06,
|
1581 |
+
"loss": 0.0373,
|
1582 |
+
"step": 1000
|
1583 |
+
},
|
1584 |
+
{
|
1585 |
+
"epoch": 97.95121951219512,
|
1586 |
+
"eval_accuracy": 0.8541666666666666,
|
1587 |
+
"eval_loss": 0.49421417713165283,
|
1588 |
+
"eval_runtime": 3.1042,
|
1589 |
+
"eval_samples_per_second": 46.388,
|
1590 |
+
"eval_steps_per_second": 1.611,
|
1591 |
+
"step": 1004
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 98.53658536585365,
|
1595 |
+
"grad_norm": 11.319071769714355,
|
1596 |
+
"learning_rate": 8.796296296296297e-06,
|
1597 |
+
"loss": 0.0447,
|
1598 |
+
"step": 1010
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 98.92682926829268,
|
1602 |
+
"eval_accuracy": 0.8541666666666666,
|
1603 |
+
"eval_loss": 0.5030938982963562,
|
1604 |
+
"eval_runtime": 3.0891,
|
1605 |
+
"eval_samples_per_second": 46.615,
|
1606 |
+
"eval_steps_per_second": 1.619,
|
1607 |
+
"step": 1014
|
1608 |
+
},
|
1609 |
+
{
|
1610 |
+
"epoch": 99.51219512195122,
|
1611 |
+
"grad_norm": 12.67363452911377,
|
1612 |
+
"learning_rate": 8.333333333333334e-06,
|
1613 |
+
"loss": 0.0519,
|
1614 |
+
"step": 1020
|
1615 |
+
},
|
1616 |
+
{
|
1617 |
+
"epoch": 100.0,
|
1618 |
+
"eval_accuracy": 0.8541666666666666,
|
1619 |
+
"eval_loss": 0.5348986983299255,
|
1620 |
+
"eval_runtime": 3.0853,
|
1621 |
+
"eval_samples_per_second": 46.673,
|
1622 |
+
"eval_steps_per_second": 1.621,
|
1623 |
+
"step": 1025
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 100.48780487804878,
|
1627 |
+
"grad_norm": 17.858867645263672,
|
1628 |
+
"learning_rate": 7.87037037037037e-06,
|
1629 |
+
"loss": 0.0387,
|
1630 |
+
"step": 1030
|
1631 |
+
},
|
1632 |
+
{
|
1633 |
+
"epoch": 100.97560975609755,
|
1634 |
+
"eval_accuracy": 0.8541666666666666,
|
1635 |
+
"eval_loss": 0.5510598421096802,
|
1636 |
+
"eval_runtime": 3.1136,
|
1637 |
+
"eval_samples_per_second": 46.249,
|
1638 |
+
"eval_steps_per_second": 1.606,
|
1639 |
+
"step": 1035
|
1640 |
+
},
|
1641 |
+
{
|
1642 |
+
"epoch": 101.46341463414635,
|
1643 |
+
"grad_norm": 2.6209030151367188,
|
1644 |
+
"learning_rate": 7.4074074074074075e-06,
|
1645 |
+
"loss": 0.0256,
|
1646 |
+
"step": 1040
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 101.95121951219512,
|
1650 |
+
"eval_accuracy": 0.8402777777777778,
|
1651 |
+
"eval_loss": 0.5319210290908813,
|
1652 |
+
"eval_runtime": 3.0318,
|
1653 |
+
"eval_samples_per_second": 47.496,
|
1654 |
+
"eval_steps_per_second": 1.649,
|
1655 |
+
"step": 1045
|
1656 |
+
},
|
1657 |
+
{
|
1658 |
+
"epoch": 102.4390243902439,
|
1659 |
+
"grad_norm": 8.14228630065918,
|
1660 |
+
"learning_rate": 6.944444444444445e-06,
|
1661 |
+
"loss": 0.043,
|
1662 |
+
"step": 1050
|
1663 |
+
},
|
1664 |
+
{
|
1665 |
+
"epoch": 102.92682926829268,
|
1666 |
+
"eval_accuracy": 0.8263888888888888,
|
1667 |
+
"eval_loss": 0.5605261325836182,
|
1668 |
+
"eval_runtime": 3.0596,
|
1669 |
+
"eval_samples_per_second": 47.064,
|
1670 |
+
"eval_steps_per_second": 1.634,
|
1671 |
+
"step": 1055
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 103.41463414634147,
|
1675 |
+
"grad_norm": 8.247823715209961,
|
1676 |
+
"learning_rate": 6.481481481481481e-06,
|
1677 |
+
"loss": 0.029,
|
1678 |
+
"step": 1060
|
1679 |
+
},
|
1680 |
+
{
|
1681 |
+
"epoch": 104.0,
|
1682 |
+
"eval_accuracy": 0.8402777777777778,
|
1683 |
+
"eval_loss": 0.5775593519210815,
|
1684 |
+
"eval_runtime": 3.3388,
|
1685 |
+
"eval_samples_per_second": 43.13,
|
1686 |
+
"eval_steps_per_second": 1.498,
|
1687 |
+
"step": 1066
|
1688 |
+
},
|
1689 |
+
{
|
1690 |
+
"epoch": 104.39024390243902,
|
1691 |
+
"grad_norm": 7.826836585998535,
|
1692 |
+
"learning_rate": 6.0185185185185185e-06,
|
1693 |
+
"loss": 0.0379,
|
1694 |
+
"step": 1070
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 104.97560975609755,
|
1698 |
+
"eval_accuracy": 0.8472222222222222,
|
1699 |
+
"eval_loss": 0.5697184801101685,
|
1700 |
+
"eval_runtime": 3.1172,
|
1701 |
+
"eval_samples_per_second": 46.196,
|
1702 |
+
"eval_steps_per_second": 1.604,
|
1703 |
+
"step": 1076
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 105.36585365853658,
|
1707 |
+
"grad_norm": 7.729676246643066,
|
1708 |
+
"learning_rate": 5.555555555555556e-06,
|
1709 |
+
"loss": 0.0445,
|
1710 |
+
"step": 1080
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 105.95121951219512,
|
1714 |
+
"eval_accuracy": 0.8680555555555556,
|
1715 |
+
"eval_loss": 0.5132907629013062,
|
1716 |
+
"eval_runtime": 3.1003,
|
1717 |
+
"eval_samples_per_second": 46.447,
|
1718 |
+
"eval_steps_per_second": 1.613,
|
1719 |
+
"step": 1086
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 106.34146341463415,
|
1723 |
+
"grad_norm": 18.125850677490234,
|
1724 |
+
"learning_rate": 5.092592592592592e-06,
|
1725 |
+
"loss": 0.0267,
|
1726 |
+
"step": 1090
|
1727 |
+
},
|
1728 |
+
{
|
1729 |
+
"epoch": 106.92682926829268,
|
1730 |
+
"eval_accuracy": 0.8680555555555556,
|
1731 |
+
"eval_loss": 0.5075670480728149,
|
1732 |
+
"eval_runtime": 2.9664,
|
1733 |
+
"eval_samples_per_second": 48.543,
|
1734 |
+
"eval_steps_per_second": 1.686,
|
1735 |
+
"step": 1096
|
1736 |
+
},
|
1737 |
+
{
|
1738 |
+
"epoch": 107.3170731707317,
|
1739 |
+
"grad_norm": 11.351465225219727,
|
1740 |
+
"learning_rate": 4.6296296296296296e-06,
|
1741 |
+
"loss": 0.044,
|
1742 |
+
"step": 1100
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 108.0,
|
1746 |
+
"eval_accuracy": 0.8402777777777778,
|
1747 |
+
"eval_loss": 0.5260215401649475,
|
1748 |
+
"eval_runtime": 3.1083,
|
1749 |
+
"eval_samples_per_second": 46.328,
|
1750 |
+
"eval_steps_per_second": 1.609,
|
1751 |
+
"step": 1107
|
1752 |
+
},
|
1753 |
+
{
|
1754 |
+
"epoch": 108.29268292682927,
|
1755 |
+
"grad_norm": 2.0481507778167725,
|
1756 |
+
"learning_rate": 4.166666666666667e-06,
|
1757 |
+
"loss": 0.0263,
|
1758 |
+
"step": 1110
|
1759 |
+
},
|
1760 |
+
{
|
1761 |
+
"epoch": 108.97560975609755,
|
1762 |
+
"eval_accuracy": 0.8541666666666666,
|
1763 |
+
"eval_loss": 0.5101317167282104,
|
1764 |
+
"eval_runtime": 3.0889,
|
1765 |
+
"eval_samples_per_second": 46.619,
|
1766 |
+
"eval_steps_per_second": 1.619,
|
1767 |
+
"step": 1117
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 109.26829268292683,
|
1771 |
+
"grad_norm": 4.980681419372559,
|
1772 |
+
"learning_rate": 3.7037037037037037e-06,
|
1773 |
+
"loss": 0.0247,
|
1774 |
+
"step": 1120
|
1775 |
+
},
|
1776 |
+
{
|
1777 |
+
"epoch": 109.95121951219512,
|
1778 |
+
"eval_accuracy": 0.8541666666666666,
|
1779 |
+
"eval_loss": 0.49724239110946655,
|
1780 |
+
"eval_runtime": 3.1321,
|
1781 |
+
"eval_samples_per_second": 45.975,
|
1782 |
+
"eval_steps_per_second": 1.596,
|
1783 |
+
"step": 1127
|
1784 |
+
},
|
1785 |
+
{
|
1786 |
+
"epoch": 110.2439024390244,
|
1787 |
+
"grad_norm": 11.607294082641602,
|
1788 |
+
"learning_rate": 3.2407407407407406e-06,
|
1789 |
+
"loss": 0.0441,
|
1790 |
+
"step": 1130
|
1791 |
+
},
|
1792 |
+
{
|
1793 |
+
"epoch": 110.92682926829268,
|
1794 |
+
"eval_accuracy": 0.8472222222222222,
|
1795 |
+
"eval_loss": 0.5093557834625244,
|
1796 |
+
"eval_runtime": 3.2177,
|
1797 |
+
"eval_samples_per_second": 44.753,
|
1798 |
+
"eval_steps_per_second": 1.554,
|
1799 |
+
"step": 1137
|
1800 |
+
},
|
1801 |
+
{
|
1802 |
+
"epoch": 111.21951219512195,
|
1803 |
+
"grad_norm": 0.6021797060966492,
|
1804 |
+
"learning_rate": 2.777777777777778e-06,
|
1805 |
+
"loss": 0.0263,
|
1806 |
+
"step": 1140
|
1807 |
+
},
|
1808 |
+
{
|
1809 |
+
"epoch": 112.0,
|
1810 |
+
"eval_accuracy": 0.8333333333333334,
|
1811 |
+
"eval_loss": 0.525884747505188,
|
1812 |
+
"eval_runtime": 3.1645,
|
1813 |
+
"eval_samples_per_second": 45.505,
|
1814 |
+
"eval_steps_per_second": 1.58,
|
1815 |
+
"step": 1148
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 112.1951219512195,
|
1819 |
+
"grad_norm": 8.183242797851562,
|
1820 |
+
"learning_rate": 2.3148148148148148e-06,
|
1821 |
+
"loss": 0.0247,
|
1822 |
+
"step": 1150
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 112.97560975609755,
|
1826 |
+
"eval_accuracy": 0.8402777777777778,
|
1827 |
+
"eval_loss": 0.5323313474655151,
|
1828 |
+
"eval_runtime": 3.0594,
|
1829 |
+
"eval_samples_per_second": 47.067,
|
1830 |
+
"eval_steps_per_second": 1.634,
|
1831 |
+
"step": 1158
|
1832 |
+
},
|
1833 |
+
{
|
1834 |
+
"epoch": 113.17073170731707,
|
1835 |
+
"grad_norm": 18.887975692749023,
|
1836 |
+
"learning_rate": 1.8518518518518519e-06,
|
1837 |
+
"loss": 0.0356,
|
1838 |
+
"step": 1160
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 113.95121951219512,
|
1842 |
+
"eval_accuracy": 0.8402777777777778,
|
1843 |
+
"eval_loss": 0.5275124907493591,
|
1844 |
+
"eval_runtime": 3.1264,
|
1845 |
+
"eval_samples_per_second": 46.059,
|
1846 |
+
"eval_steps_per_second": 1.599,
|
1847 |
+
"step": 1168
|
1848 |
+
},
|
1849 |
+
{
|
1850 |
+
"epoch": 114.14634146341463,
|
1851 |
+
"grad_norm": 9.692997932434082,
|
1852 |
+
"learning_rate": 1.388888888888889e-06,
|
1853 |
+
"loss": 0.0297,
|
1854 |
+
"step": 1170
|
1855 |
+
},
|
1856 |
+
{
|
1857 |
+
"epoch": 114.92682926829268,
|
1858 |
+
"eval_accuracy": 0.8333333333333334,
|
1859 |
+
"eval_loss": 0.5239912867546082,
|
1860 |
+
"eval_runtime": 3.0878,
|
1861 |
+
"eval_samples_per_second": 46.636,
|
1862 |
+
"eval_steps_per_second": 1.619,
|
1863 |
+
"step": 1178
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"epoch": 115.1219512195122,
|
1867 |
+
"grad_norm": 7.508498191833496,
|
1868 |
+
"learning_rate": 9.259259259259259e-07,
|
1869 |
+
"loss": 0.044,
|
1870 |
+
"step": 1180
|
1871 |
+
},
|
1872 |
+
{
|
1873 |
+
"epoch": 116.0,
|
1874 |
+
"eval_accuracy": 0.8472222222222222,
|
1875 |
+
"eval_loss": 0.520145833492279,
|
1876 |
+
"eval_runtime": 3.0984,
|
1877 |
+
"eval_samples_per_second": 46.475,
|
1878 |
+
"eval_steps_per_second": 1.614,
|
1879 |
+
"step": 1189
|
1880 |
+
},
|
1881 |
+
{
|
1882 |
+
"epoch": 116.09756097560975,
|
1883 |
+
"grad_norm": 2.9772377014160156,
|
1884 |
+
"learning_rate": 4.6296296296296297e-07,
|
1885 |
+
"loss": 0.031,
|
1886 |
+
"step": 1190
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 116.97560975609755,
|
1890 |
+
"eval_accuracy": 0.8402777777777778,
|
1891 |
+
"eval_loss": 0.5203036069869995,
|
1892 |
+
"eval_runtime": 3.066,
|
1893 |
+
"eval_samples_per_second": 46.966,
|
1894 |
+
"eval_steps_per_second": 1.631,
|
1895 |
+
"step": 1199
|
1896 |
+
},
|
1897 |
+
{
|
1898 |
+
"epoch": 117.07317073170732,
|
1899 |
+
"grad_norm": 3.435035467147827,
|
1900 |
+
"learning_rate": 0.0,
|
1901 |
+
"loss": 0.0369,
|
1902 |
+
"step": 1200
|
1903 |
+
},
|
1904 |
+
{
|
1905 |
+
"epoch": 117.07317073170732,
|
1906 |
+
"eval_accuracy": 0.8402777777777778,
|
1907 |
+
"eval_loss": 0.5202847123146057,
|
1908 |
+
"eval_runtime": 3.0873,
|
1909 |
+
"eval_samples_per_second": 46.642,
|
1910 |
+
"eval_steps_per_second": 1.62,
|
1911 |
+
"step": 1200
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 117.07317073170732,
|
1915 |
+
"step": 1200,
|
1916 |
+
"total_flos": 3.819974210196996e+18,
|
1917 |
+
"train_loss": 0.3624983422954877,
|
1918 |
+
"train_runtime": 4158.3882,
|
1919 |
+
"train_samples_per_second": 37.399,
|
1920 |
+
"train_steps_per_second": 0.289
|
1921 |
+
}
|
1922 |
+
],
|
1923 |
+
"logging_steps": 10,
|
1924 |
+
"max_steps": 1200,
|
1925 |
+
"num_input_tokens_seen": 0,
|
1926 |
+
"num_train_epochs": 120,
|
1927 |
+
"save_steps": 500,
|
1928 |
+
"stateful_callbacks": {
|
1929 |
+
"TrainerControl": {
|
1930 |
+
"args": {
|
1931 |
+
"should_epoch_stop": false,
|
1932 |
+
"should_evaluate": false,
|
1933 |
+
"should_log": false,
|
1934 |
+
"should_save": false,
|
1935 |
+
"should_training_stop": false
|
1936 |
+
},
|
1937 |
+
"attributes": {}
|
1938 |
+
}
|
1939 |
+
},
|
1940 |
+
"total_flos": 3.819974210196996e+18,
|
1941 |
+
"train_batch_size": 32,
|
1942 |
+
"trial_name": null,
|
1943 |
+
"trial_params": null
|
1944 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2df9544a19a4652671b3b26f754625fdaf4703202fcdfb2d53d46014e546b32e
|
3 |
+
size 5240
|