visheratin
commited on
Commit
•
8e8fbc1
1
Parent(s):
122865a
Update new model
Browse files- processing_llava.py +58 -12
processing_llava.py
CHANGED
@@ -31,27 +31,72 @@ from transformers.utils import TensorType
|
|
31 |
import torch
|
32 |
from open_clip.transform import PreprocessCfg, image_transform_v2
|
33 |
from modeling_llava import LlavaForConditionalGeneration
|
|
|
|
|
34 |
|
35 |
|
36 |
class OpenCLIPImageProcessor:
|
37 |
-
def __init__(self, config):
|
38 |
cfg = PreprocessCfg(**config)
|
39 |
transform = image_transform_v2(cfg=cfg, is_train=False)
|
40 |
self.transform = transform
|
|
|
|
|
41 |
|
42 |
-
def __call__(self, image
|
43 |
-
|
44 |
-
outputs = []
|
45 |
-
for item in image:
|
46 |
-
outputs.append(self.transform(item))
|
47 |
-
return {
|
48 |
-
"pixel_values": torch.tensor(outputs),
|
49 |
-
}
|
50 |
-
output = self.transform(image)
|
51 |
return {
|
52 |
-
"pixel_values": output
|
53 |
}
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
@property
|
56 |
def model_input_names(self):
|
57 |
return ["pixel_values"]
|
@@ -75,12 +120,13 @@ class LlavaProcessor:
|
|
75 |
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
76 |
) -> BatchFeature:
|
77 |
if images is not None:
|
78 |
-
pixel_values = self.image_processor(images
|
79 |
"pixel_values"
|
80 |
]
|
81 |
pixel_values = pixel_values.to(model.device).to(model.dtype)
|
82 |
image_outputs = model.vision_model(pixel_values)
|
83 |
image_features = model.multi_modal_projector(image_outputs)
|
|
|
84 |
else:
|
85 |
image_features = None
|
86 |
text_inputs = self.tokenizer(
|
|
|
31 |
import torch
|
32 |
from open_clip.transform import PreprocessCfg, image_transform_v2
|
33 |
from modeling_llava import LlavaForConditionalGeneration
|
34 |
+
from PIL import Image
|
35 |
+
import math
|
36 |
|
37 |
|
38 |
class OpenCLIPImageProcessor:
|
39 |
+
def __init__(self, config, crop_size=384, max_tokens=100):
|
40 |
cfg = PreprocessCfg(**config)
|
41 |
transform = image_transform_v2(cfg=cfg, is_train=False)
|
42 |
self.transform = transform
|
43 |
+
self.crop_size = crop_size
|
44 |
+
self.max_tokens = max_tokens
|
45 |
|
46 |
+
def __call__(self, image: Image.Image):
|
47 |
+
output = self.transform_func(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
return {
|
49 |
+
"pixel_values": output,
|
50 |
}
|
51 |
|
52 |
+
def transform_func(self, image: Image.Image):
|
53 |
+
outputs = []
|
54 |
+
outputs.append(self.transform(image))
|
55 |
+
width, height = image.size
|
56 |
+
crop_size = self.crop_size
|
57 |
+
if width <= crop_size and height <= crop_size:
|
58 |
+
outputs = torch.stack(outputs, dim=0)
|
59 |
+
return outputs
|
60 |
+
total_tokens = math.inf
|
61 |
+
while total_tokens > self.max_tokens:
|
62 |
+
total_tokens = math.floor(
|
63 |
+
(2 * width - crop_size)
|
64 |
+
/ crop_size
|
65 |
+
* (2 * height - crop_size)
|
66 |
+
/ crop_size
|
67 |
+
)
|
68 |
+
if total_tokens > self.max_tokens:
|
69 |
+
crop_size += 10
|
70 |
+
stride = crop_size // 2
|
71 |
+
x_steps = int(round((2 * width - crop_size) / crop_size))
|
72 |
+
if x_steps < 1:
|
73 |
+
x_steps = 1
|
74 |
+
y_steps = int(round((2 * height - crop_size) / crop_size))
|
75 |
+
if y_steps < 1:
|
76 |
+
y_steps = 1
|
77 |
+
x_coords = []
|
78 |
+
y_coords = []
|
79 |
+
for i in range(x_steps):
|
80 |
+
x_coords.append([i * stride, i * stride + crop_size])
|
81 |
+
if x_coords[-1][1] != width:
|
82 |
+
x_coords[-1][1] = width
|
83 |
+
for i in range(y_steps):
|
84 |
+
y_coords.append([i * stride, i * stride + crop_size])
|
85 |
+
if y_coords[-1][1] != height:
|
86 |
+
y_coords[-1][1] = height
|
87 |
+
image_parts = []
|
88 |
+
for i in range(len(x_coords)):
|
89 |
+
for j in range(len(y_coords)):
|
90 |
+
image_parts.append(
|
91 |
+
image.crop(
|
92 |
+
(x_coords[i][0], y_coords[j][0], x_coords[i][1], y_coords[j][1])
|
93 |
+
)
|
94 |
+
)
|
95 |
+
for image_part in image_parts:
|
96 |
+
outputs.append(self.transform(image_part))
|
97 |
+
outputs = torch.stack(outputs, dim=0)
|
98 |
+
return outputs
|
99 |
+
|
100 |
@property
|
101 |
def model_input_names(self):
|
102 |
return ["pixel_values"]
|
|
|
120 |
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
121 |
) -> BatchFeature:
|
122 |
if images is not None:
|
123 |
+
pixel_values = self.image_processor(images)[
|
124 |
"pixel_values"
|
125 |
]
|
126 |
pixel_values = pixel_values.to(model.device).to(model.dtype)
|
127 |
image_outputs = model.vision_model(pixel_values)
|
128 |
image_features = model.multi_modal_projector(image_outputs)
|
129 |
+
image_features = image_features.unsqueeze(0)
|
130 |
else:
|
131 |
image_features = None
|
132 |
text_inputs = self.tokenizer(
|