Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- ar
|
| 5 |
+
- kn
|
| 6 |
+
- ar
|
| 7 |
+
- ka
|
| 8 |
+
- af
|
| 9 |
+
- kk
|
| 10 |
+
- am
|
| 11 |
+
- km
|
| 12 |
+
- ar
|
| 13 |
+
- ky
|
| 14 |
+
- ar
|
| 15 |
+
- ko
|
| 16 |
+
- as
|
| 17 |
+
- lo
|
| 18 |
+
- az
|
| 19 |
+
- ml
|
| 20 |
+
- az
|
| 21 |
+
- mr
|
| 22 |
+
- be
|
| 23 |
+
- mk
|
| 24 |
+
- bn
|
| 25 |
+
- my
|
| 26 |
+
- bs
|
| 27 |
+
- nl
|
| 28 |
+
- bg
|
| 29 |
+
- ca
|
| 30 |
+
- 'no'
|
| 31 |
+
- cs
|
| 32 |
+
- ne
|
| 33 |
+
- ku
|
| 34 |
+
- pl
|
| 35 |
+
- cy
|
| 36 |
+
- pt
|
| 37 |
+
- da
|
| 38 |
+
- ro
|
| 39 |
+
- de
|
| 40 |
+
- ru
|
| 41 |
+
- el
|
| 42 |
+
- sa
|
| 43 |
+
- en
|
| 44 |
+
- si
|
| 45 |
+
- eo
|
| 46 |
+
- sk
|
| 47 |
+
- et
|
| 48 |
+
- sl
|
| 49 |
+
- eu
|
| 50 |
+
- sd
|
| 51 |
+
- fi
|
| 52 |
+
- so
|
| 53 |
+
- fr
|
| 54 |
+
- es
|
| 55 |
+
- gd
|
| 56 |
+
- sr
|
| 57 |
+
- ga
|
| 58 |
+
- su
|
| 59 |
+
- gl
|
| 60 |
+
- sv
|
| 61 |
+
- gu
|
| 62 |
+
- sw
|
| 63 |
+
- ha
|
| 64 |
+
- ta
|
| 65 |
+
- he
|
| 66 |
+
- te
|
| 67 |
+
- hi
|
| 68 |
+
- th
|
| 69 |
+
- hr
|
| 70 |
+
- tr
|
| 71 |
+
- hu
|
| 72 |
+
- ug
|
| 73 |
+
- hy
|
| 74 |
+
- uk
|
| 75 |
+
- id
|
| 76 |
+
- ur
|
| 77 |
+
- is
|
| 78 |
+
- vi
|
| 79 |
+
- it
|
| 80 |
+
- xh
|
| 81 |
+
- jv
|
| 82 |
+
- zh
|
| 83 |
+
- ja
|
| 84 |
+
pipeline_tag: zero-shot-image-classification
|
| 85 |
+
tags:
|
| 86 |
+
- siglip2
|
| 87 |
+
- clip
|
| 88 |
+
- mexma
|
| 89 |
+
model-index:
|
| 90 |
+
- name: mexma-siglip2
|
| 91 |
+
results:
|
| 92 |
+
- task:
|
| 93 |
+
type: zero-shot retrieval
|
| 94 |
+
dataset:
|
| 95 |
+
name: Crossmodal-3600
|
| 96 |
+
type: Crossmodal-3600
|
| 97 |
+
metrics:
|
| 98 |
+
- name: Image retrieval R@1
|
| 99 |
+
type: Image retrieval R@1
|
| 100 |
+
value: 62.54%
|
| 101 |
+
- name: Text retrieval R@1
|
| 102 |
+
type: Text retrieval R@1
|
| 103 |
+
value: 59.99%
|
| 104 |
+
---
|
| 105 |
+
|
| 106 |
+
## Model Summary
|
| 107 |
+
|
| 108 |
+
MEXMA-SigLIP2 is a model that combines the [MEXMA](https://huggingface.co/facebook/MEXMA) multilingual text encoder and an image encoder from the
|
| 109 |
+
[SigLIP2](https://huggingface.co/google/siglip2-so400m-patch16-512/) model. This allows us to get a high-performance CLIP model for 80 languages.
|
| 110 |
+
MEXMA-SigLIP2 sets new state-of-the-art on the [Crossmodal-3600](https://google.github.io/crossmodal-3600/) dataset with 62.54% R@1 for image retrieval and
|
| 111 |
+
59.99% R@1 for text retrieval.
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
## How to use
|
| 115 |
+
|
| 116 |
+
```
|
| 117 |
+
from transformers import AutoModel, AutoTokenizer, AutoImageProcessor
|
| 118 |
+
from PIL import Image
|
| 119 |
+
import requests
|
| 120 |
+
import torch
|
| 121 |
+
|
| 122 |
+
model = AutoModel.from_pretrained("visheratin/mexma-siglip2", torch_dtype=torch.bfloat16, trust_remote_code=True, optimized=True).to("cuda")
|
| 123 |
+
tokenizer = AutoTokenizer.from_pretrained("visheratin/mexma-siglip2")
|
| 124 |
+
processor = AutoImageProcessor.from_pretrained("visheratin/mexma-siglip2")
|
| 125 |
+
|
| 126 |
+
img = Image.open(requests.get("https://static.independent.co.uk/s3fs-public/thumbnails/image/2014/03/25/12/eiffel.jpg", stream=True).raw)
|
| 127 |
+
img = processor(images=img, return_tensors="pt")["pixel_values"]
|
| 128 |
+
img = img.to(torch.bfloat16).to("cuda")
|
| 129 |
+
with torch.inference_mode():
|
| 130 |
+
text = tokenizer(["кошка", "a dog", "एफिल टॉवर"], return_tensors="pt", padding=True).to("cuda")
|
| 131 |
+
image_logits, text_logits = model.get_logits(text["input_ids"], text["attention_mask"], img)
|
| 132 |
+
probs = image_logits.softmax(dim=-1)
|
| 133 |
+
print(probs)
|
| 134 |
+
```
|
| 135 |
+
|
| 136 |
+
## Acknowledgements
|
| 137 |
+
|
| 138 |
+
I thank [ML Collective](https://mlcollective.org/) for providing compute resources to train the model.
|