Commit
·
7372fd6
1
Parent(s):
8f213a5
Uploaded Lunar Lander with PPO
Browse files- PPO-LLv2.zip +3 -0
- PPO-LLv2/_stable_baselines3_version +1 -0
- PPO-LLv2/data +99 -0
- PPO-LLv2/policy.optimizer.pth +3 -0
- PPO-LLv2/policy.pth +3 -0
- PPO-LLv2/pytorch_variables.pth +3 -0
- PPO-LLv2/system_info.txt +8 -0
- README.md +37 -0
- config.json +1 -0
- results.json +1 -0
PPO-LLv2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7825011fe52a52519ba8f2152bc70919224e849071853520f4def038137772c
|
3 |
+
size 145638
|
PPO-LLv2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
PPO-LLv2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x177c75360>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x177c753f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x177c75480>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x177c75510>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x177c755a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x177c75630>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x177c756c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x177c75750>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x177c757e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x177c75870>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x177c75900>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x177c75990>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x177c78d00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1001472,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1693388903165595000,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGYknDwfl4e7dgiHukOvuDyTWK28kwqcPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVBAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGgbPrfLs8iMAWyUTVYDjAF0lEdAeGQObiIcinV9lChoBkdAcJLHG0eEI2gHS9NoCEdAeGS2hIvrW3V9lChoBkdAbwksvqTr3WgHS9FoCEdAeGVkrPMSsnV9lChoBkdAcjeYNAkcCGgHTTEBaAhHQHhmXlXA/LV1fZQoaAZHQHAlsKsuFpRoB0vsaAhHQHhnJ9JBgNR1fZQoaAZHQG4SElme18doB0vLaAhHQHhn0Zm7J4l1fZQoaAZHQG+CRnWattBoB0v3aAhHQHhvID1XeWR1fZQoaAZHQHCi5AUtZmtoB0vKaAhHQHhv16E8JUp1fZQoaAZHQG3lxWDHwPRoB00/AmgIR0B4cdrsSkCWdX2UKGgGR0BwkMTBZZB+aAdL+mgIR0B4crLGJemfdX2UKGgGR0Bv7lr9ETg3aAdNCQFoCEdAeHOswco6S3V9lChoBkdAc8FX7Lt/nWgHTWMBaAhHQHh08vZh8Y11fZQoaAZHQG/8JiqhlDpoB0viaAhHQHh1s01qFh51fZQoaAZHQG6eVQqI7/5oB0vYaAhHQHh9KxHG0eF1fZQoaAZHQHD3r5/LDAJoB0v/aAhHQHh+BO58Sf11fZQoaAZHQG+gzpHI6sBoB0vyaAhHQHh+24/eLvV1fZQoaAZHQG+nHz6JqItoB0vraAhHQHh/oagmJFd1fZQoaAZHwGcqCiqQzUJoB007AWgIR0B4gLogV45cdX2UKGgGR0BtdhZ0Syt3aAdL5GgIR0B4gXtsvZh8dX2UKGgGR0Bvxy9sabWmaAdL4mgIR0B4gkI1LrX2dX2UKGgGR0BwjE0FbFCLaAdL3GgIR0B4gvziCJ40dX2UKGgGR0BttIjUutfYaAdNDgFoCEdAeIrVz6rNn3V9lChoBkdAbLtBfKISDmgHS/toCEdAeIuqoqCpWHV9lChoBkdAYHD1LamGd2gHTegDaAhHQHiPLv9cbBJ1fZQoaAZHQGwSqQq7ROVoB0v2aAhHQHiQCeZof0V1fZQoaAZHQG4AX7+DOC5oB0v1aAhHQHiQ2wA2hqV1fZQoaAZHQF+qiG34Kx9oB01sAWgIR0B4mH5bhWHUdX2UKGgGR0Bi22fh/Aj6aAdN6ANoCEdAeJwLEUCaJHV9lChoBkdAbYZUo8ZDRmgHS+BoCEdAeJzOdoWYW3V9lChoBkdAcJj/fwZwXWgHS8loCEdAeJ2HZsbednV9lChoBkdAaCe6MBIWg2gHTWIBaAhHQHiezINmUW51fZQoaAZHQGyQWYfGMn9oB0vnaAhHQHimJprULD11fZQoaAZHQBlrr9l2/ztoB0vVaAhHQHim1yq+8Gt1fZQoaAZHQG5xOFQEZBNoB0vPaAhHQHinjhDPWx11fZQoaAZHQFqQL39JjDtoB03oA2gIR0B4qxuTA31jdX2UKGgGR0Bt12rGR3eOaAdL7GgIR0B4q+R+z+m4dX2UKGgGR0BwfrxXnyNGaAdL6mgIR0B4rLa8Hv+gdX2UKGgGR0Bsg9EVnEl3aAdL2WgIR0B4s88La24NdX2UKGgGR0BtthMN+b3HaAdNFgFoCEdAeLTJ/5LytnV9lChoBkdAb/v5qubI92gHTRQBaAhHQHi1t2cJ+lV1fZQoaAZHQHCd3arWAgBoB0vgaAhHQHi2gbVBlc11fZQoaAZHQG87BE0BOpNoB0viaAhHQHi3Qb6xgRd1fZQoaAZHQHF+CP+4smRoB00rAWgIR0B4uEtsenyedX2UKGgGR0BuvwMDwH7haAdNDAFoCEdAeLkwKBun/HV9lChoBkdAcAf/vfCQ92gHS+JoCEdAeLn+AmReTnV9lChoBkdAYICBg/keZGgHTegDaAhHQHjDmM0gr6N1fZQoaAZHQG8JgO8TSLJoB0vjaAhHQHjEXQUpNK11fZQoaAZHQGEh/1g6U7loB03oA2gIR0B4zbmPo3aSdX2UKGgGR0Bqzf4Glhw3aAdNEwFoCEdAeM6l7dBSk3V9lChoBkdAb87n7Hhjv2gHS/RoCEdAeM9qU/wAl3V9lChoBkdAY/Ei9qUNa2gHTegDaAhHQHjS539rGip1fZQoaAZHQF/Mq7iADq5oB03oA2gIR0B43JJf6XSjdX2UKGgGR0BxWBGgBcRlaAdLymgIR0B43TN4Z/CqdX2UKGgGR0BwSpBBzFMqaAdL72gIR0B43gORT0g9dX2UKGgGR0BxEl9oexOdaAdL0mgIR0B43rpY9xIbdX2UKGgGR0BuNzHIZIhAaAdL8GgIR0B435D1GsmwdX2UKGgGR0BsP3dweeWfaAdL2mgIR0B44FdcB2fTdX2UKGgGR0BrDaUiY9gXaAdNvAFoCEdAeOj3MINVinV9lChoBkdAcF/D9wWFe2gHS89oCEdAeOm8lolD4XV9lChoBkdAb6MCEpRXOmgHS+RoCEdAeOqINmUW23V9lChoBkdAcFdzr/sE7mgHTQIBaAhHQHjrb6guh9N1fZQoaAZHQHEYDE74i5doB0vtaAhHQHjsM63iJfp1fZQoaAZHQHEELhBJI2BoB0vXaAhHQHjs8t9QXRB1fZQoaAZHQG7LeANG3F1oB01UAmgIR0B47wMqjJuEdX2UKGgGR0Btgg66reZYaAdL/2gIR0B49iGVRk3CdX2UKGgGR0BusjA+IMz/aAdL4GgIR0B49uY9gWrPdX2UKGgGR0BbPgYUFjd6aAdN6ANoCEdAePpArxy4nXV9lChoBkdAb3iMBp5/smgHS+JoCEdAePr89wFTvXV9lChoBkdAcRFreqJdjWgHS9doCEdAePu8VpKzzHV9lChoBkdAbr+lj3Ehq2gHS+VoCEdAePx+oLofS3V9lChoBkdAbR863iJfpmgHS9loCEdAeQQvWYnfEXV9lChoBkdAcKyuRcNYsGgHS/FoCEdAeQT/+bVjJHV9lChoBkdAciYnnuAqeGgHTSQBaAhHQHkGA3cYZVJ1fZQoaAZHQG8NhQ3xWktoB0vaaAhHQHkGuueSSvF1fZQoaAZHQGuedHUc4o9oB00WAWgIR0B5B61Aqur7dX2UKGgGR0BwKrAWSEDhaAdNFQFoCEdAeQiYnfEXL3V9lChoBkdAbkr8Q7LdN2gHTWUBaAhHQHkJ1vddmg91fZQoaAZHQG6PCAMDwH9oB0v4aAhHQHkKqiO/+Kl1fZQoaAZHQG4Z8PWhAW1oB00/AWgIR0B5EkCNjslcdX2UKGgGR0AOl+XqqwQlaAdLs2gIR0B5EsySFGoadX2UKGgGR0Bxt45XEIgOaAdNCAFoCEdAeROqHoHLR3V9lChoBkdAXVV3V09yLmgHTegDaAhHQHkXEv4/NaB1fZQoaAZHQG6kpRoAXEZoB0vZaAhHQHkXwm/nGKh1fZQoaAZHv/IUGVzIV/NoB0umaAhHQHkeRx5s0pF1fZQoaAZHQG0smeDnNgVoB0vpaAhHQHkfDZ13dKx1fZQoaAZHQG3UI6jnFHdoB0vVaAhHQHkft/vv0Ad1fZQoaAZHQGneiiyprDZoB0vqaAhHQHkgdVaOgg51fZQoaAZHQEGLUIcBEKFoB0vVaAhHQHkhMUAT7EZ1fZQoaAZHQGxxDtoi9qVoB0vhaAhHQHkh5ha1Tit1fZQoaAZHQG70lc6eXiRoB0vTaAhHQHkimr8zhxZ1fZQoaAZHQG+83i704BFoB0vkaAhHQHkjUWAPNFB1fZQoaAZHQGnVxgZ0jkdoB001AWgIR0B5JFsguAZsdX2UKGgGR0BaCiCOFQEZaAdN6ANoCEdAeS3ddmg8KXV9lChoBkdAXdCii7Ciy2gHTegDaAhHQHkxU21lXil1fZQoaAZHQG8RB3zMA3loB0v7aAhHQHk4XeWOZLJ1fZQoaAZHP/SlI3BHkLhoB0uqaAhHQHk47coH9m91fZQoaAZHQGGbyi22G7BoB03oA2gIR0B5PHjENvwWdX2UKGgGR0BvTYnKGL1maAdL5mgIR0B5PURqXWvsdX2UKGgGR0Ah4mhM8HObaAdLq2gIR0B5Pdcry1/ldX2UKGgGR0AVVNUOuq3maAdLtGgIR0B5PnArQPZqdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 4890,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZC9vcHQvaG9tZWJyZXcvQ2Fza3Jvb20vbWluaWZvcmdlL2Jhc2UvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGQvb3B0L2hvbWVicmV3L0Nhc2tyb29tL21pbmlmb3JnZS9iYXNlL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZC9vcHQvaG9tZWJyZXcvQ2Fza3Jvb20vbWluaWZvcmdlL2Jhc2UvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGQvb3B0L2hvbWVicmV3L0Nhc2tyb29tL21pbmlmb3JnZS9iYXNlL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
PPO-LLv2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac875e45f7a68ebe6be2894931ca877382d761eae6de2e03615064657114042c
|
3 |
+
size 87545
|
PPO-LLv2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4389af7b57b1bd04ee077091ae1113304d2a97dbae0ea0e3ce16da2847f798bb
|
3 |
+
size 43201
|
PPO-LLv2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-LLv2/system_info.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: macOS-14.0-arm64-arm-64bit Darwin Kernel Version 23.0.0: Tue Aug 1 03:25:51 PDT 2023; root:xnu-10002.0.242.0.6~31/RELEASE_ARM64_T6000
|
2 |
+
- Python: 3.10.10
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 206.33 +/- 94.63
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x177c75360>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x177c753f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x177c75480>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x177c75510>", "_build": "<function ActorCriticPolicy._build at 0x177c755a0>", "forward": "<function ActorCriticPolicy.forward at 0x177c75630>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x177c756c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x177c75750>", "_predict": "<function ActorCriticPolicy._predict at 0x177c757e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x177c75870>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x177c75900>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x177c75990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x177c78d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1001472, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693388903165595000, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGYknDwfl4e7dgiHukOvuDyTWK28kwqcPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVBAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGgbPrfLs8iMAWyUTVYDjAF0lEdAeGQObiIcinV9lChoBkdAcJLHG0eEI2gHS9NoCEdAeGS2hIvrW3V9lChoBkdAbwksvqTr3WgHS9FoCEdAeGVkrPMSsnV9lChoBkdAcjeYNAkcCGgHTTEBaAhHQHhmXlXA/LV1fZQoaAZHQHAlsKsuFpRoB0vsaAhHQHhnJ9JBgNR1fZQoaAZHQG4SElme18doB0vLaAhHQHhn0Zm7J4l1fZQoaAZHQG+CRnWattBoB0v3aAhHQHhvID1XeWR1fZQoaAZHQHCi5AUtZmtoB0vKaAhHQHhv16E8JUp1fZQoaAZHQG3lxWDHwPRoB00/AmgIR0B4cdrsSkCWdX2UKGgGR0BwkMTBZZB+aAdL+mgIR0B4crLGJemfdX2UKGgGR0Bv7lr9ETg3aAdNCQFoCEdAeHOswco6S3V9lChoBkdAc8FX7Lt/nWgHTWMBaAhHQHh08vZh8Y11fZQoaAZHQG/8JiqhlDpoB0viaAhHQHh1s01qFh51fZQoaAZHQG6eVQqI7/5oB0vYaAhHQHh9KxHG0eF1fZQoaAZHQHD3r5/LDAJoB0v/aAhHQHh+BO58Sf11fZQoaAZHQG+gzpHI6sBoB0vyaAhHQHh+24/eLvV1fZQoaAZHQG+nHz6JqItoB0vraAhHQHh/oagmJFd1fZQoaAZHwGcqCiqQzUJoB007AWgIR0B4gLogV45cdX2UKGgGR0BtdhZ0Syt3aAdL5GgIR0B4gXtsvZh8dX2UKGgGR0Bvxy9sabWmaAdL4mgIR0B4gkI1LrX2dX2UKGgGR0BwjE0FbFCLaAdL3GgIR0B4gvziCJ40dX2UKGgGR0BttIjUutfYaAdNDgFoCEdAeIrVz6rNn3V9lChoBkdAbLtBfKISDmgHS/toCEdAeIuqoqCpWHV9lChoBkdAYHD1LamGd2gHTegDaAhHQHiPLv9cbBJ1fZQoaAZHQGwSqQq7ROVoB0v2aAhHQHiQCeZof0V1fZQoaAZHQG4AX7+DOC5oB0v1aAhHQHiQ2wA2hqV1fZQoaAZHQF+qiG34Kx9oB01sAWgIR0B4mH5bhWHUdX2UKGgGR0Bi22fh/Aj6aAdN6ANoCEdAeJwLEUCaJHV9lChoBkdAbYZUo8ZDRmgHS+BoCEdAeJzOdoWYW3V9lChoBkdAcJj/fwZwXWgHS8loCEdAeJ2HZsbednV9lChoBkdAaCe6MBIWg2gHTWIBaAhHQHiezINmUW51fZQoaAZHQGyQWYfGMn9oB0vnaAhHQHimJprULD11fZQoaAZHQBlrr9l2/ztoB0vVaAhHQHim1yq+8Gt1fZQoaAZHQG5xOFQEZBNoB0vPaAhHQHinjhDPWx11fZQoaAZHQFqQL39JjDtoB03oA2gIR0B4qxuTA31jdX2UKGgGR0Bt12rGR3eOaAdL7GgIR0B4q+R+z+m4dX2UKGgGR0BwfrxXnyNGaAdL6mgIR0B4rLa8Hv+gdX2UKGgGR0Bsg9EVnEl3aAdL2WgIR0B4s88La24NdX2UKGgGR0BtthMN+b3HaAdNFgFoCEdAeLTJ/5LytnV9lChoBkdAb/v5qubI92gHTRQBaAhHQHi1t2cJ+lV1fZQoaAZHQHCd3arWAgBoB0vgaAhHQHi2gbVBlc11fZQoaAZHQG87BE0BOpNoB0viaAhHQHi3Qb6xgRd1fZQoaAZHQHF+CP+4smRoB00rAWgIR0B4uEtsenyedX2UKGgGR0BuvwMDwH7haAdNDAFoCEdAeLkwKBun/HV9lChoBkdAcAf/vfCQ92gHS+JoCEdAeLn+AmReTnV9lChoBkdAYICBg/keZGgHTegDaAhHQHjDmM0gr6N1fZQoaAZHQG8JgO8TSLJoB0vjaAhHQHjEXQUpNK11fZQoaAZHQGEh/1g6U7loB03oA2gIR0B4zbmPo3aSdX2UKGgGR0Bqzf4Glhw3aAdNEwFoCEdAeM6l7dBSk3V9lChoBkdAb87n7Hhjv2gHS/RoCEdAeM9qU/wAl3V9lChoBkdAY/Ei9qUNa2gHTegDaAhHQHjS539rGip1fZQoaAZHQF/Mq7iADq5oB03oA2gIR0B43JJf6XSjdX2UKGgGR0BxWBGgBcRlaAdLymgIR0B43TN4Z/CqdX2UKGgGR0BwSpBBzFMqaAdL72gIR0B43gORT0g9dX2UKGgGR0BxEl9oexOdaAdL0mgIR0B43rpY9xIbdX2UKGgGR0BuNzHIZIhAaAdL8GgIR0B435D1GsmwdX2UKGgGR0BsP3dweeWfaAdL2mgIR0B44FdcB2fTdX2UKGgGR0BrDaUiY9gXaAdNvAFoCEdAeOj3MINVinV9lChoBkdAcF/D9wWFe2gHS89oCEdAeOm8lolD4XV9lChoBkdAb6MCEpRXOmgHS+RoCEdAeOqINmUW23V9lChoBkdAcFdzr/sE7mgHTQIBaAhHQHjrb6guh9N1fZQoaAZHQHEYDE74i5doB0vtaAhHQHjsM63iJfp1fZQoaAZHQHEELhBJI2BoB0vXaAhHQHjs8t9QXRB1fZQoaAZHQG7LeANG3F1oB01UAmgIR0B47wMqjJuEdX2UKGgGR0Btgg66reZYaAdL/2gIR0B49iGVRk3CdX2UKGgGR0BusjA+IMz/aAdL4GgIR0B49uY9gWrPdX2UKGgGR0BbPgYUFjd6aAdN6ANoCEdAePpArxy4nXV9lChoBkdAb3iMBp5/smgHS+JoCEdAePr89wFTvXV9lChoBkdAcRFreqJdjWgHS9doCEdAePu8VpKzzHV9lChoBkdAbr+lj3Ehq2gHS+VoCEdAePx+oLofS3V9lChoBkdAbR863iJfpmgHS9loCEdAeQQvWYnfEXV9lChoBkdAcKyuRcNYsGgHS/FoCEdAeQT/+bVjJHV9lChoBkdAciYnnuAqeGgHTSQBaAhHQHkGA3cYZVJ1fZQoaAZHQG8NhQ3xWktoB0vaaAhHQHkGuueSSvF1fZQoaAZHQGuedHUc4o9oB00WAWgIR0B5B61Aqur7dX2UKGgGR0BwKrAWSEDhaAdNFQFoCEdAeQiYnfEXL3V9lChoBkdAbkr8Q7LdN2gHTWUBaAhHQHkJ1vddmg91fZQoaAZHQG6PCAMDwH9oB0v4aAhHQHkKqiO/+Kl1fZQoaAZHQG4Z8PWhAW1oB00/AWgIR0B5EkCNjslcdX2UKGgGR0AOl+XqqwQlaAdLs2gIR0B5EsySFGoadX2UKGgGR0Bxt45XEIgOaAdNCAFoCEdAeROqHoHLR3V9lChoBkdAXVV3V09yLmgHTegDaAhHQHkXEv4/NaB1fZQoaAZHQG6kpRoAXEZoB0vZaAhHQHkXwm/nGKh1fZQoaAZHv/IUGVzIV/NoB0umaAhHQHkeRx5s0pF1fZQoaAZHQG0smeDnNgVoB0vpaAhHQHkfDZ13dKx1fZQoaAZHQG3UI6jnFHdoB0vVaAhHQHkft/vv0Ad1fZQoaAZHQGneiiyprDZoB0vqaAhHQHkgdVaOgg51fZQoaAZHQEGLUIcBEKFoB0vVaAhHQHkhMUAT7EZ1fZQoaAZHQGxxDtoi9qVoB0vhaAhHQHkh5ha1Tit1fZQoaAZHQG70lc6eXiRoB0vTaAhHQHkimr8zhxZ1fZQoaAZHQG+83i704BFoB0vkaAhHQHkjUWAPNFB1fZQoaAZHQGnVxgZ0jkdoB001AWgIR0B5JFsguAZsdX2UKGgGR0BaCiCOFQEZaAdN6ANoCEdAeS3ddmg8KXV9lChoBkdAXdCii7Ciy2gHTegDaAhHQHkxU21lXil1fZQoaAZHQG8RB3zMA3loB0v7aAhHQHk4XeWOZLJ1fZQoaAZHP/SlI3BHkLhoB0uqaAhHQHk47coH9m91fZQoaAZHQGGbyi22G7BoB03oA2gIR0B5PHjENvwWdX2UKGgGR0BvTYnKGL1maAdL5mgIR0B5PURqXWvsdX2UKGgGR0Ah4mhM8HObaAdLq2gIR0B5Pdcry1/ldX2UKGgGR0AVVNUOuq3maAdLtGgIR0B5PnArQPZqdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4890, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZC9vcHQvaG9tZWJyZXcvQ2Fza3Jvb20vbWluaWZvcmdlL2Jhc2UvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGQvb3B0L2hvbWVicmV3L0Nhc2tyb29tL21pbmlmb3JnZS9iYXNlL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZC9vcHQvaG9tZWJyZXcvQ2Fza3Jvb20vbWluaWZvcmdlL2Jhc2UvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGQvb3B0L2hvbWVicmV3L0Nhc2tyb29tL21pbmlmb3JnZS9iYXNlL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "macOS-14.0-arm64-arm-64bit Darwin Kernel Version 23.0.0: Tue Aug 1 03:25:51 PDT 2023; root:xnu-10002.0.242.0.6~31/RELEASE_ARM64_T6000", "Python": "3.10.10", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 206.32833370000003, "std_reward": 94.63256397198131, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-30T15:50:06.557551"}
|