File size: 1,904 Bytes
a2a2f52 dd32923 a2a2f52 dd32923 a2a2f52 dd32923 a2a2f52 b628f70 a2a2f52 4a10559 a2a2f52 dd32923 a2a2f52 4a10559 a2a2f52 dd32923 4a10559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: knowledge-graph-nlp
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# knowledge-graph-nlp
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [vishnun/NLP-KnowledgeGraph](https://huggingface.co/datasets/vishnun/NLP-KnowledgeGraph) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1765
- Precision: 0.9013
- Recall: 0.8807
- F1: 0.8909
- Accuracy: 0.9487
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2841 | 1.0 | 2316 | 0.2421 | 0.8382 | 0.8124 | 0.8251 | 0.9189 |
| 0.1925 | 2.0 | 4632 | 0.1946 | 0.8752 | 0.8567 | 0.8658 | 0.9373 |
| 0.1539 | 3.0 | 6948 | 0.1815 | 0.8912 | 0.8735 | 0.8822 | 0.9449 |
| 0.1285 | 4.0 | 9264 | 0.1765 | 0.9013 | 0.8807 | 0.8909 | 0.9487 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2
|