vitekkor commited on
Commit
d5ddcbc
1 Parent(s): af48473

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -174
README.md CHANGED
@@ -1,199 +1,93 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
10
 
 
11
 
12
- ## Model Details
 
 
 
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
 
 
 
 
 
 
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ language:
3
+ - ru
4
+ base_model: t-tech/T-pro-it-1.0
5
+ tags:
6
+ - vllm
7
+ - bnb
8
+ - bitsandbytes
9
+ - 8bit
10
  ---
11
 
12
+ # vitekkor/T-pro-it-1.0-bnb-8bit
13
+ This model is an 8-bit quantization of model [`t-tech/T-pro-it-1.0`](https://huggingface.co/t-tech/T-pro-it-1.0) using bitsandbytes.
14
+ Refer to the [original model card](https://huggingface.co/t-tech/T-pro-it-1.0) for more details on the model.
15
 
16
+ ## Use with transformers
17
 
18
+ ```python
19
+ from transformers import AutoModelForCausalLM, AutoTokenizer
20
 
21
+ MODEL_NAME = "vitekkor/T-pro-it-1.0-bnb-8bit"
22
 
23
+ model = AutoModelForCausalLM.from_pretrained(
24
+ MODEL_NAME,
25
+ torch_dtype="auto",
26
+ device_map="auto"
27
+ )
28
 
29
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
30
 
31
+ prompt = "Напиши стих про машинное обучение"
32
+ messages = [
33
+ {"role": "system", "content": "Ты T-pro, виртуальный ассистент в Т-Технологии. Твоя задача - быть полезным диалоговым ассистентом."},
34
+ {"role": "user", "content": prompt}
35
+ ]
36
+ text = tokenizer.apply_chat_template(
37
+ messages,
38
+ tokenize=False,
39
+ add_generation_prompt=True
40
+ )
41
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
42
 
43
+ generated_ids = model.generate(
44
+ **model_inputs,
45
+ max_new_tokens=256
46
+ )
47
+ generated_ids = [
48
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
49
+ ]
50
 
51
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
 
 
 
 
 
 
52
 
53
+ print(response)
54
+ ```
55
 
56
+ ## Use with vllm
57
 
58
+ ### Python
 
 
59
 
60
+ ```bash
61
+ pip install vllm
62
+ ```
63
 
64
+ ```python
65
+ from transformers import AutoTokenizer
66
+ from vllm import LLM, SamplingParams
67
 
68
+ MODEL_NAME = "vitekkor/T-pro-it-1.0-bnb-8bit"
69
 
70
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
71
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
72
 
73
+ llm = LLM(model=MODEL_NAME, max_model_len=8192)
74
 
75
+ prompt = "Напиши стих про машинное обучение"
76
+ messages = [
77
+ {"role": "system", "content": "Ты T-pro, виртуальный ассистент в Т-Технологии. Твоя задача - быть полезным диалоговым ассистентом."},
78
+ {"role": "user", "content": prompt}
79
+ ]
80
 
81
+ prompt_token_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
82
 
83
+ outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
84
 
85
+ generated_text = [output.outputs[0].text for output in outputs]
86
+ print(generated_text)
87
+ ```
88
 
89
+ ### Server:
90
 
91
+ ```bash
92
+ vllm serve vitekkor/T-pro-it-1.0-bnb-8bit
93
+ ```