viviastaari commited on
Commit
c1eaf38
·
1 Parent(s): 4a03f02

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: finetuning-sentiment-analysis-en
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # finetuning-sentiment-analysis-en
19
+
20
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0792
23
+ - Accuracy: 0.9803
24
+ - F1: 0.9856
25
+ - Precision: 0.9875
26
+ - Recall: 0.9837
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 3.0
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
57
+ | 0.426 | 1.0 | 1408 | 0.2718 | 0.8910 | 0.9201 | 0.9251 | 0.9151 |
58
+ | 0.3247 | 2.0 | 2816 | 0.1552 | 0.9540 | 0.9665 | 0.9656 | 0.9674 |
59
+ | 0.1582 | 3.0 | 4224 | 0.0792 | 0.9803 | 0.9856 | 0.9875 | 0.9837 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.19.2
65
+ - Pytorch 1.11.0+cu113
66
+ - Datasets 2.2.2
67
+ - Tokenizers 0.12.1