mColBERT / colbert /training /eager_batcher.py
vjeronymo2's picture
Adding model and checkpoint
828992f
raw
history blame
2.08 kB
import os
import ujson
from functools import partial
from colbert.utils.utils import print_message
from colbert.modeling.tokenization import QueryTokenizer, DocTokenizer, tensorize_triples
from colbert.utils.runs import Run
class EagerBatcher():
def __init__(self, args, rank=0, nranks=1):
self.rank, self.nranks = rank, nranks
self.bsize, self.accumsteps = args.bsize, args.accumsteps
self.query_tokenizer = QueryTokenizer(args.query_maxlen)
self.doc_tokenizer = DocTokenizer(args.doc_maxlen)
self.tensorize_triples = partial(tensorize_triples, self.query_tokenizer, self.doc_tokenizer)
self.triples_path = args.triples
self._reset_triples()
def _reset_triples(self):
self.reader = open(self.triples_path, mode='r', encoding="utf-8")
self.position = 0
def __iter__(self):
return self
def __next__(self):
queries, positives, negatives = [], [], []
for line_idx, line in zip(range(self.bsize * self.nranks), self.reader):
if (self.position + line_idx) % self.nranks != self.rank:
continue
query, pos, neg = line.strip().split('\t')
queries.append(query)
positives.append(pos)
negatives.append(neg)
self.position += line_idx + 1
if len(queries) < self.bsize:
raise StopIteration
return self.collate(queries, positives, negatives)
def collate(self, queries, positives, negatives):
assert len(queries) == len(positives) == len(negatives) == self.bsize
return self.tensorize_triples(queries, positives, negatives, self.bsize // self.accumsteps)
def skip_to_batch(self, batch_idx, intended_batch_size):
self._reset_triples()
Run.warn(f'Skipping to batch #{batch_idx} (with intended_batch_size = {intended_batch_size}) for training.')
_ = [self.reader.readline() for _ in range(batch_idx * intended_batch_size)]
return None