First shot at Lunar Lander with PPO
Browse files- README.md +37 -0
- config.json +1 -0
- lunar_landing.zip +3 -0
- lunar_landing/_stable_baselines3_version +1 -0
- lunar_landing/data +91 -0
- lunar_landing/policy.optimizer.pth +3 -0
- lunar_landing/policy.pth +3 -0
- lunar_landing/pytorch_variables.pth +3 -0
- lunar_landing/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -606.02 +/- 190.89
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe213e9fca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe213e9fd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe213e9fdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe213e9fe50>", "_build": "<function ActorCriticPolicy._build at 0x7fe213e9fee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe213e9ff70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe213ea3040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe213ea30d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe213ea3160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe213ea31f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe213ea3280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe213e9b4e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671337312416132727, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI28LzUrHDSsCUhpRSlIwBbJRLjowBdJRHQFcvj1PFefJ1fZQoaAZoCWgPQwjH1jOEYwxOwJSGlFKUaBVLkGgWR0BXNk7Sy+pPdX2UKGgGaAloD0MIfxXgu83rScCUhpRSlGgVS+5oFkdAVz0OEug6EXV9lChoBmgJaA9DCDFdiNUf4e8/lIaUUpRoFUuBaBZHQFc9ctXgccV1fZQoaAZoCWgPQwgQ7PgvEDw8wJSGlFKUaBVLe2gWR0BXPV2FFlTWdX2UKGgGaAloD0MIjiEAOPbrY8CUhpRSlGgVS8JoFkdAVz8LVnVXm3V9lChoBmgJaA9DCFG8ytqmLk7AlIaUUpRoFUvLaBZHQFdAAs052hZ1fZQoaAZoCWgPQwh0Q1N2+vFswJSGlFKUaBVLzGgWR0BXRHa37UG3dX2UKGgGaAloD0MIqcE0DB/DTsCUhpRSlGgVS6xoFkdAV0XhKlHjInV9lChoBmgJaA9DCLRVSWQfPkrAlIaUUpRoFU0bAWgWR0BXSBdld1MedX2UKGgGaAloD0MIbJVgcTh9Q8CUhpRSlGgVS9VoFkdAV03uqm0mdHV9lChoBmgJaA9DCJDXg0nxF1nAlIaUUpRoFUu7aBZHQFdWs9SuQp51fZQoaAZoCWgPQwjI723683h0wJSGlFKUaBVNRQFoFkdAV1yuJUHY6HV9lChoBmgJaA9DCA68Wu5Mu2XAlIaUUpRoFUuuaBZHQFddaoddVvN1fZQoaAZoCWgPQwhHk4sxsIhcwJSGlFKUaBVLW2gWR0BXXZgkTpPidX2UKGgGaAloD0MI7N6KxASbR8CUhpRSlGgVS4BoFkdAV2GUSqU/wHV9lChoBmgJaA9DCIfFqGvtS03AlIaUUpRoFUv+aBZHQFdhwGnn+yZ1fZQoaAZoCWgPQwhrLGFtjKFMwJSGlFKUaBVLdGgWR0BXYyVW0Z3tdX2UKGgGaAloD0MIRu1+FWDHb8CUhpRSlGgVS6BoFkdAV2Vo+OfdynV9lChoBmgJaA9DCFQCYhIubCnAlIaUUpRoFUvBaBZHQFiYrftQbdd1fZQoaAZoCWgPQwiNRdPZyaAPQJSGlFKUaBVLjmgWR0BYmR9srNGFdX2UKGgGaAloD0MIR1Z+GYwdTcCUhpRSlGgVS5VoFkdAWKDYSQHRkXV9lChoBmgJaA9DCPRqgNJQ1UrAlIaUUpRoFUuLaBZHQFig/WDpTuR1fZQoaAZoCWgPQwgSbFz/LrBpwJSGlFKUaBVLnWgWR0BYpGUSqU/wdX2UKGgGaAloD0MIFaqbi78BZcCUhpRSlGgVS9loFkdAWLFZ4fOlf3V9lChoBmgJaA9DCJtxGqKKE2TAlIaUUpRoFUvoaBZHQFi0lBQemvZ1fZQoaAZoCWgPQwiH+fIC7N1ZwJSGlFKUaBVLi2gWR0BYtpGax5cDdX2UKGgGaAloD0MIzbG8qx6AZcCUhpRSlGgVS7xoFkdAWLZ0HQhOg3V9lChoBmgJaA9DCEnXTL7ZPkBAlIaUUpRoFUt+aBZHQFi2ulXRw611fZQoaAZoCWgPQwjcoWEx6qJTwJSGlFKUaBVLeGgWR0BYuJ4nndO7dX2UKGgGaAloD0MI2XiwxW7pZMCUhpRSlGgVS7poFkdAWL7SApazNXV9lChoBmgJaA9DCDxnCwitRxxAlIaUUpRoFUt9aBZHQFjJhRqGlAN1fZQoaAZoCWgPQwi71t6nqjZIQJSGlFKUaBVLmWgWR0BYyX3xnWaudX2UKGgGaAloD0MIkL5J06DUMcCUhpRSlGgVS8RoFkdAWM4jHGS6lXV9lChoBmgJaA9DCLSs+8dCjDZAlIaUUpRoFUvdaBZHQFjR2U0Nz8x1fZQoaAZoCWgPQwg4Sl6dY/BTwJSGlFKUaBVL62gWR0BY1drO7g89dX2UKGgGaAloD0MITkF+NnLBO8CUhpRSlGgVS8toFkdAWNp/smfGuXV9lChoBmgJaA9DCE3bv7LSBANAlIaUUpRoFUuNaBZHQFjgNbC79Q51fZQoaAZoCWgPQwjL2xFOC6I5wJSGlFKUaBVLiWgWR0BY5ApjMFEBdX2UKGgGaAloD0MIiQlq+JZfa8CUhpRSlGgVS9NoFkdAWOZaouPFN3V9lChoBmgJaA9DCNEksaTcoFrAlIaUUpRoFUu1aBZHQFj3tfG+9J11fZQoaAZoCWgPQwjfo/56hSk9wJSGlFKUaBVLjWgWR0BY+5j2Bas7dX2UKGgGaAloD0MIzhq8r0oPbcCUhpRSlGgVS81oFkdAWP7riVB2OnV9lChoBmgJaA9DCGNEotAyV2TAlIaUUpRoFUuWaBZHQFkAGYrrgO11fZQoaAZoCWgPQwjx9EpZRiZwwJSGlFKUaBVL2WgWR0BZBNtl7MPjdX2UKGgGaAloD0MI1GGFWz4ZWcCUhpRSlGgVTS8BaBZHQFkRq0+kgwJ1fZQoaAZoCWgPQwh1yThGsrciQJSGlFKUaBVLb2gWR0BZEhllK9PDdX2UKGgGaAloD0MIOiAJ+3Y7csCUhpRSlGgVS6xoFkdAWRRSQ5myxHV9lChoBmgJaA9DCKW8VkJ3CSjAlIaUUpRoFU0YAWgWR0BZHPE0iyIIdX2UKGgGaAloD0MIF50stV6AbsCUhpRSlGgVTQABaBZHQFkgOpbUwzt1fZQoaAZoCWgPQwjV52or9tlowJSGlFKUaBVNnwFoFkdAWSUGgSOBD3V9lChoBmgJaA9DCJM3wMx3KDPAlIaUUpRoFUttaBZHQFkmV9nbqQl1fZQoaAZoCWgPQwi8df7tsi8xQJSGlFKUaBVLpGgWR0BZKgh8pkPMdX2UKGgGaAloD0MIKjkn9tA+07+UhpRSlGgVS3ZoFkdAWS+rxRVIZ3V9lChoBmgJaA9DCM9nQL0Z3STAlIaUUpRoFUt5aBZHQFkxUxEfDDV1fZQoaAZoCWgPQwgdq5Se6SXjP5SGlFKUaBVLiGgWR0BZM6mwaBI4dX2UKGgGaAloD0MI5KHvbuXkYMCUhpRSlGgVS+VoFkdAWTTZTQ3PzHV9lChoBmgJaA9DCEPKT6p9gVnAlIaUUpRoFU0EAWgWR0BZOuzposZpdX2UKGgGaAloD0MIo+ar5CN7cMCUhpRSlGgVS+5oFkdAWT5gZ0jkdXV9lChoBmgJaA9DCMMstHOasT3AlIaUUpRoFUt/aBZHQFlEOkcjqwB1fZQoaAZoCWgPQwhbsFQX8DLZP5SGlFKUaBVLlGgWR0BZSRBNVR1pdX2UKGgGaAloD0MI2ht8YTKxPMCUhpRSlGgVS41oFkdAWVAHB1s+FHV9lChoBmgJaA9DCLWHvVDAtifAlIaUUpRoFUvLaBZHQFlR9AHE/B51fZQoaAZoCWgPQwjlfoeiQCVpwJSGlFKUaBVLlGgWR0BZVT4cm0E6dX2UKGgGaAloD0MIVMiVehbEDkCUhpRSlGgVS3JoFkdAWVeE4//vOXV9lChoBmgJaA9DCPg404TtH1jAlIaUUpRoFUu8aBZHQFloPkq+ajN1fZQoaAZoCWgPQwgd5ssLsH9AwJSGlFKUaBVLe2gWR0BZagf6oESvdX2UKGgGaAloD0MIUUoIVtVXQsCUhpRSlGgVS79oFkdAWWsUEgW8AnV9lChoBmgJaA9DCDwtP3CVSlzAlIaUUpRoFUvDaBZHQFlwtrKvFFV1fZQoaAZoCWgPQwhDHyxjQ6FNwJSGlFKUaBVLdGgWR0BZdJRsMy8BdX2UKGgGaAloD0MIzT0kfG+bYMCUhpRSlGgVS6ZoFkdAWXg4NqgyunV9lChoBmgJaA9DCFKZYg6CCEHAlIaUUpRoFUu5aBZHQFl5J+lTFVF1fZQoaAZoCWgPQwgcfGEyVYBIQJSGlFKUaBVLl2gWR0BZfN2TxG2DdX2UKGgGaAloD0MII2WLpN1mTMCUhpRSlGgVS9RoFkdAWYLq7iADrHV9lChoBmgJaA9DCIuKOJ1ke2zAlIaUUpRoFUviaBZHQFmGHARChOB1fZQoaAZoCWgPQwg2BTI7S+p1wJSGlFKUaBVNNQFoFkdAWYc3eenQ6nV9lChoBmgJaA9DCHQHsTOFS1PAlIaUUpRoFUvLaBZHQFmnRkVeruJ1fZQoaAZoCWgPQwj9vn/z4plTwJSGlFKUaBVL4mgWR0BZp8HKOktVdX2UKGgGaAloD0MIsTGvIw6hLUCUhpRSlGgVS6JoFkdAWaq7TUiIL3V9lChoBmgJaA9DCNm0Ugjk5ErAlIaUUpRoFUupaBZHQFm1wIt16mh1fZQoaAZoCWgPQwi0y7c+rCFawJSGlFKUaBVNAAFoFkdAWbgbyYoiLXV9lChoBmgJaA9DCFVpi2t85kfAlIaUUpRoFUudaBZHQFm4IomXw9d1fZQoaAZoCWgPQwiEg72JIUFCQJSGlFKUaBVLxmgWR0BZvJZW7voedX2UKGgGaAloD0MIVMiVehbsTsCUhpRSlGgVS6poFkdAWb7ollbu+nV9lChoBmgJaA9DCKaYg6CjB0hAlIaUUpRoFUusaBZHQFnFhQm/nGN1fZQoaAZoCWgPQwixTpXvGQhywJSGlFKUaBVL82gWR0BZztoi9qUNdX2UKGgGaAloD0MITuyhfawgasCUhpRSlGgVS7poFkdAWdVq33Hq/3V9lChoBmgJaA9DCJgTtMlh12vAlIaUUpRoFU03AWgWR0BZ1gpKBd2QdX2UKGgGaAloD0MIhH6mXrfYHUCUhpRSlGgVS+loFkdAWdczWPLgXXV9lChoBmgJaA9DCPvOL0rQM0zAlIaUUpRoFUvPaBZHQFne4gieNDN1fZQoaAZoCWgPQwh72XbaGn0+wJSGlFKUaBVLiWgWR0BZ4+V5a/yodX2UKGgGaAloD0MIYY4ev7eCWcCUhpRSlGgVS4poFkdAWfeCxu89OnV9lChoBmgJaA9DCN7H0RxZ70HAlIaUUpRoFUvBaBZHQFn8FGXokiV1fZQoaAZoCWgPQwj5wI7/AmNBwJSGlFKUaBVLvGgWR0BaCp44ZMtcdX2UKGgGaAloD0MIGLMlqyIQRcCUhpRSlGgVS5ZoFkdAWhdX2dupCXV9lChoBmgJaA9DCLh1N0/1EWnAlIaUUpRoFU0BAWgWR0BaH/aQFLWadX2UKGgGaAloD0MIzF62nbZmHMCUhpRSlGgVS6RoFkdAWiGg13t8eHV9lChoBmgJaA9DCCqRRC+jKCBAlIaUUpRoFUuYaBZHQFol7L+xW1d1fZQoaAZoCWgPQwjHKxA9KWZWwJSGlFKUaBVLwmgWR0BaJ5w84giedX2UKGgGaAloD0MICAWlaOU6W8CUhpRSlGgVS+NoFkdAWieiEg4ffXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 32, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar_landing.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c9a11ea0993a01a6d45ca1a3abf15284993592bbf9b91f7b4dafc650e4e996a
|
3 |
+
size 146291
|
lunar_landing/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
lunar_landing/data
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe213e9fca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe213e9fd30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe213e9fdc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe213e9fe50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe213e9fee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe213e9ff70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe213ea3040>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe213ea30d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe213ea3160>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe213ea31f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe213ea3280>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe213e9b4e0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 114688,
|
46 |
+
"_total_timesteps": 100000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671337312416132727,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": null,
|
58 |
+
"_last_episode_starts": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_original_obs": null,
|
63 |
+
"_episode_num": 0,
|
64 |
+
"use_sde": false,
|
65 |
+
"sde_sample_freq": -1,
|
66 |
+
"_current_progress_remaining": -0.1468799999999999,
|
67 |
+
"ep_info_buffer": {
|
68 |
+
":type:": "<class 'collections.deque'>",
|
69 |
+
":serialized:": "gAWVKBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI28LzUrHDSsCUhpRSlIwBbJRLjowBdJRHQFcvj1PFefJ1fZQoaAZoCWgPQwjH1jOEYwxOwJSGlFKUaBVLkGgWR0BXNk7Sy+pPdX2UKGgGaAloD0MIfxXgu83rScCUhpRSlGgVS+5oFkdAVz0OEug6EXV9lChoBmgJaA9DCDFdiNUf4e8/lIaUUpRoFUuBaBZHQFc9ctXgccV1fZQoaAZoCWgPQwgQ7PgvEDw8wJSGlFKUaBVLe2gWR0BXPV2FFlTWdX2UKGgGaAloD0MIjiEAOPbrY8CUhpRSlGgVS8JoFkdAVz8LVnVXm3V9lChoBmgJaA9DCFG8ytqmLk7AlIaUUpRoFUvLaBZHQFdAAs052hZ1fZQoaAZoCWgPQwh0Q1N2+vFswJSGlFKUaBVLzGgWR0BXRHa37UG3dX2UKGgGaAloD0MIqcE0DB/DTsCUhpRSlGgVS6xoFkdAV0XhKlHjInV9lChoBmgJaA9DCLRVSWQfPkrAlIaUUpRoFU0bAWgWR0BXSBdld1MedX2UKGgGaAloD0MIbJVgcTh9Q8CUhpRSlGgVS9VoFkdAV03uqm0mdHV9lChoBmgJaA9DCJDXg0nxF1nAlIaUUpRoFUu7aBZHQFdWs9SuQp51fZQoaAZoCWgPQwjI723683h0wJSGlFKUaBVNRQFoFkdAV1yuJUHY6HV9lChoBmgJaA9DCA68Wu5Mu2XAlIaUUpRoFUuuaBZHQFddaoddVvN1fZQoaAZoCWgPQwhHk4sxsIhcwJSGlFKUaBVLW2gWR0BXXZgkTpPidX2UKGgGaAloD0MI7N6KxASbR8CUhpRSlGgVS4BoFkdAV2GUSqU/wHV9lChoBmgJaA9DCIfFqGvtS03AlIaUUpRoFUv+aBZHQFdhwGnn+yZ1fZQoaAZoCWgPQwhrLGFtjKFMwJSGlFKUaBVLdGgWR0BXYyVW0Z3tdX2UKGgGaAloD0MIRu1+FWDHb8CUhpRSlGgVS6BoFkdAV2Vo+OfdynV9lChoBmgJaA9DCFQCYhIubCnAlIaUUpRoFUvBaBZHQFiYrftQbdd1fZQoaAZoCWgPQwiNRdPZyaAPQJSGlFKUaBVLjmgWR0BYmR9srNGFdX2UKGgGaAloD0MIR1Z+GYwdTcCUhpRSlGgVS5VoFkdAWKDYSQHRkXV9lChoBmgJaA9DCPRqgNJQ1UrAlIaUUpRoFUuLaBZHQFig/WDpTuR1fZQoaAZoCWgPQwgSbFz/LrBpwJSGlFKUaBVLnWgWR0BYpGUSqU/wdX2UKGgGaAloD0MIFaqbi78BZcCUhpRSlGgVS9loFkdAWLFZ4fOlf3V9lChoBmgJaA9DCJtxGqKKE2TAlIaUUpRoFUvoaBZHQFi0lBQemvZ1fZQoaAZoCWgPQwiH+fIC7N1ZwJSGlFKUaBVLi2gWR0BYtpGax5cDdX2UKGgGaAloD0MIzbG8qx6AZcCUhpRSlGgVS7xoFkdAWLZ0HQhOg3V9lChoBmgJaA9DCEnXTL7ZPkBAlIaUUpRoFUt+aBZHQFi2ulXRw611fZQoaAZoCWgPQwjcoWEx6qJTwJSGlFKUaBVLeGgWR0BYuJ4nndO7dX2UKGgGaAloD0MI2XiwxW7pZMCUhpRSlGgVS7poFkdAWL7SApazNXV9lChoBmgJaA9DCDxnCwitRxxAlIaUUpRoFUt9aBZHQFjJhRqGlAN1fZQoaAZoCWgPQwi71t6nqjZIQJSGlFKUaBVLmWgWR0BYyX3xnWaudX2UKGgGaAloD0MIkL5J06DUMcCUhpRSlGgVS8RoFkdAWM4jHGS6lXV9lChoBmgJaA9DCLSs+8dCjDZAlIaUUpRoFUvdaBZHQFjR2U0Nz8x1fZQoaAZoCWgPQwg4Sl6dY/BTwJSGlFKUaBVL62gWR0BY1drO7g89dX2UKGgGaAloD0MITkF+NnLBO8CUhpRSlGgVS8toFkdAWNp/smfGuXV9lChoBmgJaA9DCE3bv7LSBANAlIaUUpRoFUuNaBZHQFjgNbC79Q51fZQoaAZoCWgPQwjL2xFOC6I5wJSGlFKUaBVLiWgWR0BY5ApjMFEBdX2UKGgGaAloD0MIiQlq+JZfa8CUhpRSlGgVS9NoFkdAWOZaouPFN3V9lChoBmgJaA9DCNEksaTcoFrAlIaUUpRoFUu1aBZHQFj3tfG+9J11fZQoaAZoCWgPQwjfo/56hSk9wJSGlFKUaBVLjWgWR0BY+5j2Bas7dX2UKGgGaAloD0MIzhq8r0oPbcCUhpRSlGgVS81oFkdAWP7riVB2OnV9lChoBmgJaA9DCGNEotAyV2TAlIaUUpRoFUuWaBZHQFkAGYrrgO11fZQoaAZoCWgPQwjx9EpZRiZwwJSGlFKUaBVL2WgWR0BZBNtl7MPjdX2UKGgGaAloD0MI1GGFWz4ZWcCUhpRSlGgVTS8BaBZHQFkRq0+kgwJ1fZQoaAZoCWgPQwh1yThGsrciQJSGlFKUaBVLb2gWR0BZEhllK9PDdX2UKGgGaAloD0MIOiAJ+3Y7csCUhpRSlGgVS6xoFkdAWRRSQ5myxHV9lChoBmgJaA9DCKW8VkJ3CSjAlIaUUpRoFU0YAWgWR0BZHPE0iyIIdX2UKGgGaAloD0MIF50stV6AbsCUhpRSlGgVTQABaBZHQFkgOpbUwzt1fZQoaAZoCWgPQwjV52or9tlowJSGlFKUaBVNnwFoFkdAWSUGgSOBD3V9lChoBmgJaA9DCJM3wMx3KDPAlIaUUpRoFUttaBZHQFkmV9nbqQl1fZQoaAZoCWgPQwi8df7tsi8xQJSGlFKUaBVLpGgWR0BZKgh8pkPMdX2UKGgGaAloD0MIKjkn9tA+07+UhpRSlGgVS3ZoFkdAWS+rxRVIZ3V9lChoBmgJaA9DCM9nQL0Z3STAlIaUUpRoFUt5aBZHQFkxUxEfDDV1fZQoaAZoCWgPQwgdq5Se6SXjP5SGlFKUaBVLiGgWR0BZM6mwaBI4dX2UKGgGaAloD0MI5KHvbuXkYMCUhpRSlGgVS+VoFkdAWTTZTQ3PzHV9lChoBmgJaA9DCEPKT6p9gVnAlIaUUpRoFU0EAWgWR0BZOuzposZpdX2UKGgGaAloD0MIo+ar5CN7cMCUhpRSlGgVS+5oFkdAWT5gZ0jkdXV9lChoBmgJaA9DCMMstHOasT3AlIaUUpRoFUt/aBZHQFlEOkcjqwB1fZQoaAZoCWgPQwhbsFQX8DLZP5SGlFKUaBVLlGgWR0BZSRBNVR1pdX2UKGgGaAloD0MI2ht8YTKxPMCUhpRSlGgVS41oFkdAWVAHB1s+FHV9lChoBmgJaA9DCLWHvVDAtifAlIaUUpRoFUvLaBZHQFlR9AHE/B51fZQoaAZoCWgPQwjlfoeiQCVpwJSGlFKUaBVLlGgWR0BZVT4cm0E6dX2UKGgGaAloD0MIVMiVehbEDkCUhpRSlGgVS3JoFkdAWVeE4//vOXV9lChoBmgJaA9DCPg404TtH1jAlIaUUpRoFUu8aBZHQFloPkq+ajN1fZQoaAZoCWgPQwgd5ssLsH9AwJSGlFKUaBVLe2gWR0BZagf6oESvdX2UKGgGaAloD0MIUUoIVtVXQsCUhpRSlGgVS79oFkdAWWsUEgW8AnV9lChoBmgJaA9DCDwtP3CVSlzAlIaUUpRoFUvDaBZHQFlwtrKvFFV1fZQoaAZoCWgPQwhDHyxjQ6FNwJSGlFKUaBVLdGgWR0BZdJRsMy8BdX2UKGgGaAloD0MIzT0kfG+bYMCUhpRSlGgVS6ZoFkdAWXg4NqgyunV9lChoBmgJaA9DCFKZYg6CCEHAlIaUUpRoFUu5aBZHQFl5J+lTFVF1fZQoaAZoCWgPQwgcfGEyVYBIQJSGlFKUaBVLl2gWR0BZfN2TxG2DdX2UKGgGaAloD0MII2WLpN1mTMCUhpRSlGgVS9RoFkdAWYLq7iADrHV9lChoBmgJaA9DCIuKOJ1ke2zAlIaUUpRoFUviaBZHQFmGHARChOB1fZQoaAZoCWgPQwg2BTI7S+p1wJSGlFKUaBVNNQFoFkdAWYc3eenQ6nV9lChoBmgJaA9DCHQHsTOFS1PAlIaUUpRoFUvLaBZHQFmnRkVeruJ1fZQoaAZoCWgPQwj9vn/z4plTwJSGlFKUaBVL4mgWR0BZp8HKOktVdX2UKGgGaAloD0MIsTGvIw6hLUCUhpRSlGgVS6JoFkdAWaq7TUiIL3V9lChoBmgJaA9DCNm0Ugjk5ErAlIaUUpRoFUupaBZHQFm1wIt16mh1fZQoaAZoCWgPQwi0y7c+rCFawJSGlFKUaBVNAAFoFkdAWbgbyYoiLXV9lChoBmgJaA9DCFVpi2t85kfAlIaUUpRoFUudaBZHQFm4IomXw9d1fZQoaAZoCWgPQwiEg72JIUFCQJSGlFKUaBVLxmgWR0BZvJZW7voedX2UKGgGaAloD0MIVMiVehbsTsCUhpRSlGgVS6poFkdAWb7ollbu+nV9lChoBmgJaA9DCKaYg6CjB0hAlIaUUpRoFUusaBZHQFnFhQm/nGN1fZQoaAZoCWgPQwixTpXvGQhywJSGlFKUaBVL82gWR0BZztoi9qUNdX2UKGgGaAloD0MITuyhfawgasCUhpRSlGgVS7poFkdAWdVq33Hq/3V9lChoBmgJaA9DCJgTtMlh12vAlIaUUpRoFU03AWgWR0BZ1gpKBd2QdX2UKGgGaAloD0MIhH6mXrfYHUCUhpRSlGgVS+loFkdAWdczWPLgXXV9lChoBmgJaA9DCPvOL0rQM0zAlIaUUpRoFUvPaBZHQFne4gieNDN1fZQoaAZoCWgPQwh72XbaGn0+wJSGlFKUaBVLiWgWR0BZ4+V5a/yodX2UKGgGaAloD0MIYY4ev7eCWcCUhpRSlGgVS4poFkdAWfeCxu89OnV9lChoBmgJaA9DCN7H0RxZ70HAlIaUUpRoFUvBaBZHQFn8FGXokiV1fZQoaAZoCWgPQwj5wI7/AmNBwJSGlFKUaBVLvGgWR0BaCp44ZMtcdX2UKGgGaAloD0MIGLMlqyIQRcCUhpRSlGgVS5ZoFkdAWhdX2dupCXV9lChoBmgJaA9DCLh1N0/1EWnAlIaUUpRoFU0BAWgWR0BaH/aQFLWadX2UKGgGaAloD0MIzF62nbZmHMCUhpRSlGgVS6RoFkdAWiGg13t8eHV9lChoBmgJaA9DCCqRRC+jKCBAlIaUUpRoFUuYaBZHQFol7L+xW1d1fZQoaAZoCWgPQwjHKxA9KWZWwJSGlFKUaBVLwmgWR0BaJ5w84giedX2UKGgGaAloD0MICAWlaOU6W8CUhpRSlGgVS+NoFkdAWieiEg4ffXVlLg=="
|
70 |
+
},
|
71 |
+
"ep_success_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
74 |
+
},
|
75 |
+
"_n_updates": 32,
|
76 |
+
"n_steps": 1024,
|
77 |
+
"gamma": 0.99,
|
78 |
+
"gae_lambda": 0.95,
|
79 |
+
"ent_coef": 0.0,
|
80 |
+
"vf_coef": 0.5,
|
81 |
+
"max_grad_norm": 0.5,
|
82 |
+
"batch_size": 64,
|
83 |
+
"n_epochs": 4,
|
84 |
+
"clip_range": {
|
85 |
+
":type:": "<class 'function'>",
|
86 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
87 |
+
},
|
88 |
+
"clip_range_vf": null,
|
89 |
+
"normalize_advantage": true,
|
90 |
+
"target_kl": null
|
91 |
+
}
|
lunar_landing/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a0f7e20c0d36be8642243b0a15f06f74a187d5ac476d0d7a632827b3b951f80
|
3 |
+
size 88057
|
lunar_landing/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a0b9e5454c863f94063a5ecc8dfe6a30babcdf2248cd4d29063cab42b45d231
|
3 |
+
size 43201
|
lunar_landing/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_landing/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (90.6 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -606.0229613794945, "std_reward": 190.89335927370888, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-18T04:23:50.684042"}
|