vjkrish commited on
Commit
a521ebc
·
1 Parent(s): 27c66bf

First shot at Lunar Lander with PPO

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -606.02 +/- 190.89
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe213e9fca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe213e9fd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe213e9fdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe213e9fe50>", "_build": "<function ActorCriticPolicy._build at 0x7fe213e9fee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe213e9ff70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe213ea3040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe213ea30d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe213ea3160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe213ea31f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe213ea3280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe213e9b4e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671337312416132727, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI28LzUrHDSsCUhpRSlIwBbJRLjowBdJRHQFcvj1PFefJ1fZQoaAZoCWgPQwjH1jOEYwxOwJSGlFKUaBVLkGgWR0BXNk7Sy+pPdX2UKGgGaAloD0MIfxXgu83rScCUhpRSlGgVS+5oFkdAVz0OEug6EXV9lChoBmgJaA9DCDFdiNUf4e8/lIaUUpRoFUuBaBZHQFc9ctXgccV1fZQoaAZoCWgPQwgQ7PgvEDw8wJSGlFKUaBVLe2gWR0BXPV2FFlTWdX2UKGgGaAloD0MIjiEAOPbrY8CUhpRSlGgVS8JoFkdAVz8LVnVXm3V9lChoBmgJaA9DCFG8ytqmLk7AlIaUUpRoFUvLaBZHQFdAAs052hZ1fZQoaAZoCWgPQwh0Q1N2+vFswJSGlFKUaBVLzGgWR0BXRHa37UG3dX2UKGgGaAloD0MIqcE0DB/DTsCUhpRSlGgVS6xoFkdAV0XhKlHjInV9lChoBmgJaA9DCLRVSWQfPkrAlIaUUpRoFU0bAWgWR0BXSBdld1MedX2UKGgGaAloD0MIbJVgcTh9Q8CUhpRSlGgVS9VoFkdAV03uqm0mdHV9lChoBmgJaA9DCJDXg0nxF1nAlIaUUpRoFUu7aBZHQFdWs9SuQp51fZQoaAZoCWgPQwjI723683h0wJSGlFKUaBVNRQFoFkdAV1yuJUHY6HV9lChoBmgJaA9DCA68Wu5Mu2XAlIaUUpRoFUuuaBZHQFddaoddVvN1fZQoaAZoCWgPQwhHk4sxsIhcwJSGlFKUaBVLW2gWR0BXXZgkTpPidX2UKGgGaAloD0MI7N6KxASbR8CUhpRSlGgVS4BoFkdAV2GUSqU/wHV9lChoBmgJaA9DCIfFqGvtS03AlIaUUpRoFUv+aBZHQFdhwGnn+yZ1fZQoaAZoCWgPQwhrLGFtjKFMwJSGlFKUaBVLdGgWR0BXYyVW0Z3tdX2UKGgGaAloD0MIRu1+FWDHb8CUhpRSlGgVS6BoFkdAV2Vo+OfdynV9lChoBmgJaA9DCFQCYhIubCnAlIaUUpRoFUvBaBZHQFiYrftQbdd1fZQoaAZoCWgPQwiNRdPZyaAPQJSGlFKUaBVLjmgWR0BYmR9srNGFdX2UKGgGaAloD0MIR1Z+GYwdTcCUhpRSlGgVS5VoFkdAWKDYSQHRkXV9lChoBmgJaA9DCPRqgNJQ1UrAlIaUUpRoFUuLaBZHQFig/WDpTuR1fZQoaAZoCWgPQwgSbFz/LrBpwJSGlFKUaBVLnWgWR0BYpGUSqU/wdX2UKGgGaAloD0MIFaqbi78BZcCUhpRSlGgVS9loFkdAWLFZ4fOlf3V9lChoBmgJaA9DCJtxGqKKE2TAlIaUUpRoFUvoaBZHQFi0lBQemvZ1fZQoaAZoCWgPQwiH+fIC7N1ZwJSGlFKUaBVLi2gWR0BYtpGax5cDdX2UKGgGaAloD0MIzbG8qx6AZcCUhpRSlGgVS7xoFkdAWLZ0HQhOg3V9lChoBmgJaA9DCEnXTL7ZPkBAlIaUUpRoFUt+aBZHQFi2ulXRw611fZQoaAZoCWgPQwjcoWEx6qJTwJSGlFKUaBVLeGgWR0BYuJ4nndO7dX2UKGgGaAloD0MI2XiwxW7pZMCUhpRSlGgVS7poFkdAWL7SApazNXV9lChoBmgJaA9DCDxnCwitRxxAlIaUUpRoFUt9aBZHQFjJhRqGlAN1fZQoaAZoCWgPQwi71t6nqjZIQJSGlFKUaBVLmWgWR0BYyX3xnWaudX2UKGgGaAloD0MIkL5J06DUMcCUhpRSlGgVS8RoFkdAWM4jHGS6lXV9lChoBmgJaA9DCLSs+8dCjDZAlIaUUpRoFUvdaBZHQFjR2U0Nz8x1fZQoaAZoCWgPQwg4Sl6dY/BTwJSGlFKUaBVL62gWR0BY1drO7g89dX2UKGgGaAloD0MITkF+NnLBO8CUhpRSlGgVS8toFkdAWNp/smfGuXV9lChoBmgJaA9DCE3bv7LSBANAlIaUUpRoFUuNaBZHQFjgNbC79Q51fZQoaAZoCWgPQwjL2xFOC6I5wJSGlFKUaBVLiWgWR0BY5ApjMFEBdX2UKGgGaAloD0MIiQlq+JZfa8CUhpRSlGgVS9NoFkdAWOZaouPFN3V9lChoBmgJaA9DCNEksaTcoFrAlIaUUpRoFUu1aBZHQFj3tfG+9J11fZQoaAZoCWgPQwjfo/56hSk9wJSGlFKUaBVLjWgWR0BY+5j2Bas7dX2UKGgGaAloD0MIzhq8r0oPbcCUhpRSlGgVS81oFkdAWP7riVB2OnV9lChoBmgJaA9DCGNEotAyV2TAlIaUUpRoFUuWaBZHQFkAGYrrgO11fZQoaAZoCWgPQwjx9EpZRiZwwJSGlFKUaBVL2WgWR0BZBNtl7MPjdX2UKGgGaAloD0MI1GGFWz4ZWcCUhpRSlGgVTS8BaBZHQFkRq0+kgwJ1fZQoaAZoCWgPQwh1yThGsrciQJSGlFKUaBVLb2gWR0BZEhllK9PDdX2UKGgGaAloD0MIOiAJ+3Y7csCUhpRSlGgVS6xoFkdAWRRSQ5myxHV9lChoBmgJaA9DCKW8VkJ3CSjAlIaUUpRoFU0YAWgWR0BZHPE0iyIIdX2UKGgGaAloD0MIF50stV6AbsCUhpRSlGgVTQABaBZHQFkgOpbUwzt1fZQoaAZoCWgPQwjV52or9tlowJSGlFKUaBVNnwFoFkdAWSUGgSOBD3V9lChoBmgJaA9DCJM3wMx3KDPAlIaUUpRoFUttaBZHQFkmV9nbqQl1fZQoaAZoCWgPQwi8df7tsi8xQJSGlFKUaBVLpGgWR0BZKgh8pkPMdX2UKGgGaAloD0MIKjkn9tA+07+UhpRSlGgVS3ZoFkdAWS+rxRVIZ3V9lChoBmgJaA9DCM9nQL0Z3STAlIaUUpRoFUt5aBZHQFkxUxEfDDV1fZQoaAZoCWgPQwgdq5Se6SXjP5SGlFKUaBVLiGgWR0BZM6mwaBI4dX2UKGgGaAloD0MI5KHvbuXkYMCUhpRSlGgVS+VoFkdAWTTZTQ3PzHV9lChoBmgJaA9DCEPKT6p9gVnAlIaUUpRoFU0EAWgWR0BZOuzposZpdX2UKGgGaAloD0MIo+ar5CN7cMCUhpRSlGgVS+5oFkdAWT5gZ0jkdXV9lChoBmgJaA9DCMMstHOasT3AlIaUUpRoFUt/aBZHQFlEOkcjqwB1fZQoaAZoCWgPQwhbsFQX8DLZP5SGlFKUaBVLlGgWR0BZSRBNVR1pdX2UKGgGaAloD0MI2ht8YTKxPMCUhpRSlGgVS41oFkdAWVAHB1s+FHV9lChoBmgJaA9DCLWHvVDAtifAlIaUUpRoFUvLaBZHQFlR9AHE/B51fZQoaAZoCWgPQwjlfoeiQCVpwJSGlFKUaBVLlGgWR0BZVT4cm0E6dX2UKGgGaAloD0MIVMiVehbEDkCUhpRSlGgVS3JoFkdAWVeE4//vOXV9lChoBmgJaA9DCPg404TtH1jAlIaUUpRoFUu8aBZHQFloPkq+ajN1fZQoaAZoCWgPQwgd5ssLsH9AwJSGlFKUaBVLe2gWR0BZagf6oESvdX2UKGgGaAloD0MIUUoIVtVXQsCUhpRSlGgVS79oFkdAWWsUEgW8AnV9lChoBmgJaA9DCDwtP3CVSlzAlIaUUpRoFUvDaBZHQFlwtrKvFFV1fZQoaAZoCWgPQwhDHyxjQ6FNwJSGlFKUaBVLdGgWR0BZdJRsMy8BdX2UKGgGaAloD0MIzT0kfG+bYMCUhpRSlGgVS6ZoFkdAWXg4NqgyunV9lChoBmgJaA9DCFKZYg6CCEHAlIaUUpRoFUu5aBZHQFl5J+lTFVF1fZQoaAZoCWgPQwgcfGEyVYBIQJSGlFKUaBVLl2gWR0BZfN2TxG2DdX2UKGgGaAloD0MII2WLpN1mTMCUhpRSlGgVS9RoFkdAWYLq7iADrHV9lChoBmgJaA9DCIuKOJ1ke2zAlIaUUpRoFUviaBZHQFmGHARChOB1fZQoaAZoCWgPQwg2BTI7S+p1wJSGlFKUaBVNNQFoFkdAWYc3eenQ6nV9lChoBmgJaA9DCHQHsTOFS1PAlIaUUpRoFUvLaBZHQFmnRkVeruJ1fZQoaAZoCWgPQwj9vn/z4plTwJSGlFKUaBVL4mgWR0BZp8HKOktVdX2UKGgGaAloD0MIsTGvIw6hLUCUhpRSlGgVS6JoFkdAWaq7TUiIL3V9lChoBmgJaA9DCNm0Ugjk5ErAlIaUUpRoFUupaBZHQFm1wIt16mh1fZQoaAZoCWgPQwi0y7c+rCFawJSGlFKUaBVNAAFoFkdAWbgbyYoiLXV9lChoBmgJaA9DCFVpi2t85kfAlIaUUpRoFUudaBZHQFm4IomXw9d1fZQoaAZoCWgPQwiEg72JIUFCQJSGlFKUaBVLxmgWR0BZvJZW7voedX2UKGgGaAloD0MIVMiVehbsTsCUhpRSlGgVS6poFkdAWb7ollbu+nV9lChoBmgJaA9DCKaYg6CjB0hAlIaUUpRoFUusaBZHQFnFhQm/nGN1fZQoaAZoCWgPQwixTpXvGQhywJSGlFKUaBVL82gWR0BZztoi9qUNdX2UKGgGaAloD0MITuyhfawgasCUhpRSlGgVS7poFkdAWdVq33Hq/3V9lChoBmgJaA9DCJgTtMlh12vAlIaUUpRoFU03AWgWR0BZ1gpKBd2QdX2UKGgGaAloD0MIhH6mXrfYHUCUhpRSlGgVS+loFkdAWdczWPLgXXV9lChoBmgJaA9DCPvOL0rQM0zAlIaUUpRoFUvPaBZHQFne4gieNDN1fZQoaAZoCWgPQwh72XbaGn0+wJSGlFKUaBVLiWgWR0BZ4+V5a/yodX2UKGgGaAloD0MIYY4ev7eCWcCUhpRSlGgVS4poFkdAWfeCxu89OnV9lChoBmgJaA9DCN7H0RxZ70HAlIaUUpRoFUvBaBZHQFn8FGXokiV1fZQoaAZoCWgPQwj5wI7/AmNBwJSGlFKUaBVLvGgWR0BaCp44ZMtcdX2UKGgGaAloD0MIGLMlqyIQRcCUhpRSlGgVS5ZoFkdAWhdX2dupCXV9lChoBmgJaA9DCLh1N0/1EWnAlIaUUpRoFU0BAWgWR0BaH/aQFLWadX2UKGgGaAloD0MIzF62nbZmHMCUhpRSlGgVS6RoFkdAWiGg13t8eHV9lChoBmgJaA9DCCqRRC+jKCBAlIaUUpRoFUuYaBZHQFol7L+xW1d1fZQoaAZoCWgPQwjHKxA9KWZWwJSGlFKUaBVLwmgWR0BaJ5w84giedX2UKGgGaAloD0MICAWlaOU6W8CUhpRSlGgVS+NoFkdAWieiEg4ffXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 32, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunar_landing.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c9a11ea0993a01a6d45ca1a3abf15284993592bbf9b91f7b4dafc650e4e996a
3
+ size 146291
lunar_landing/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
lunar_landing/data ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe213e9fca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe213e9fd30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe213e9fdc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe213e9fe50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe213e9fee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe213e9ff70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe213ea3040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe213ea30d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe213ea3160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe213ea31f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe213ea3280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fe213e9b4e0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 114688,
46
+ "_total_timesteps": 100000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671337312416132727,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": null,
58
+ "_last_episode_starts": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_original_obs": null,
63
+ "_episode_num": 0,
64
+ "use_sde": false,
65
+ "sde_sample_freq": -1,
66
+ "_current_progress_remaining": -0.1468799999999999,
67
+ "ep_info_buffer": {
68
+ ":type:": "<class 'collections.deque'>",
69
+ ":serialized:": "gAWVKBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI28LzUrHDSsCUhpRSlIwBbJRLjowBdJRHQFcvj1PFefJ1fZQoaAZoCWgPQwjH1jOEYwxOwJSGlFKUaBVLkGgWR0BXNk7Sy+pPdX2UKGgGaAloD0MIfxXgu83rScCUhpRSlGgVS+5oFkdAVz0OEug6EXV9lChoBmgJaA9DCDFdiNUf4e8/lIaUUpRoFUuBaBZHQFc9ctXgccV1fZQoaAZoCWgPQwgQ7PgvEDw8wJSGlFKUaBVLe2gWR0BXPV2FFlTWdX2UKGgGaAloD0MIjiEAOPbrY8CUhpRSlGgVS8JoFkdAVz8LVnVXm3V9lChoBmgJaA9DCFG8ytqmLk7AlIaUUpRoFUvLaBZHQFdAAs052hZ1fZQoaAZoCWgPQwh0Q1N2+vFswJSGlFKUaBVLzGgWR0BXRHa37UG3dX2UKGgGaAloD0MIqcE0DB/DTsCUhpRSlGgVS6xoFkdAV0XhKlHjInV9lChoBmgJaA9DCLRVSWQfPkrAlIaUUpRoFU0bAWgWR0BXSBdld1MedX2UKGgGaAloD0MIbJVgcTh9Q8CUhpRSlGgVS9VoFkdAV03uqm0mdHV9lChoBmgJaA9DCJDXg0nxF1nAlIaUUpRoFUu7aBZHQFdWs9SuQp51fZQoaAZoCWgPQwjI723683h0wJSGlFKUaBVNRQFoFkdAV1yuJUHY6HV9lChoBmgJaA9DCA68Wu5Mu2XAlIaUUpRoFUuuaBZHQFddaoddVvN1fZQoaAZoCWgPQwhHk4sxsIhcwJSGlFKUaBVLW2gWR0BXXZgkTpPidX2UKGgGaAloD0MI7N6KxASbR8CUhpRSlGgVS4BoFkdAV2GUSqU/wHV9lChoBmgJaA9DCIfFqGvtS03AlIaUUpRoFUv+aBZHQFdhwGnn+yZ1fZQoaAZoCWgPQwhrLGFtjKFMwJSGlFKUaBVLdGgWR0BXYyVW0Z3tdX2UKGgGaAloD0MIRu1+FWDHb8CUhpRSlGgVS6BoFkdAV2Vo+OfdynV9lChoBmgJaA9DCFQCYhIubCnAlIaUUpRoFUvBaBZHQFiYrftQbdd1fZQoaAZoCWgPQwiNRdPZyaAPQJSGlFKUaBVLjmgWR0BYmR9srNGFdX2UKGgGaAloD0MIR1Z+GYwdTcCUhpRSlGgVS5VoFkdAWKDYSQHRkXV9lChoBmgJaA9DCPRqgNJQ1UrAlIaUUpRoFUuLaBZHQFig/WDpTuR1fZQoaAZoCWgPQwgSbFz/LrBpwJSGlFKUaBVLnWgWR0BYpGUSqU/wdX2UKGgGaAloD0MIFaqbi78BZcCUhpRSlGgVS9loFkdAWLFZ4fOlf3V9lChoBmgJaA9DCJtxGqKKE2TAlIaUUpRoFUvoaBZHQFi0lBQemvZ1fZQoaAZoCWgPQwiH+fIC7N1ZwJSGlFKUaBVLi2gWR0BYtpGax5cDdX2UKGgGaAloD0MIzbG8qx6AZcCUhpRSlGgVS7xoFkdAWLZ0HQhOg3V9lChoBmgJaA9DCEnXTL7ZPkBAlIaUUpRoFUt+aBZHQFi2ulXRw611fZQoaAZoCWgPQwjcoWEx6qJTwJSGlFKUaBVLeGgWR0BYuJ4nndO7dX2UKGgGaAloD0MI2XiwxW7pZMCUhpRSlGgVS7poFkdAWL7SApazNXV9lChoBmgJaA9DCDxnCwitRxxAlIaUUpRoFUt9aBZHQFjJhRqGlAN1fZQoaAZoCWgPQwi71t6nqjZIQJSGlFKUaBVLmWgWR0BYyX3xnWaudX2UKGgGaAloD0MIkL5J06DUMcCUhpRSlGgVS8RoFkdAWM4jHGS6lXV9lChoBmgJaA9DCLSs+8dCjDZAlIaUUpRoFUvdaBZHQFjR2U0Nz8x1fZQoaAZoCWgPQwg4Sl6dY/BTwJSGlFKUaBVL62gWR0BY1drO7g89dX2UKGgGaAloD0MITkF+NnLBO8CUhpRSlGgVS8toFkdAWNp/smfGuXV9lChoBmgJaA9DCE3bv7LSBANAlIaUUpRoFUuNaBZHQFjgNbC79Q51fZQoaAZoCWgPQwjL2xFOC6I5wJSGlFKUaBVLiWgWR0BY5ApjMFEBdX2UKGgGaAloD0MIiQlq+JZfa8CUhpRSlGgVS9NoFkdAWOZaouPFN3V9lChoBmgJaA9DCNEksaTcoFrAlIaUUpRoFUu1aBZHQFj3tfG+9J11fZQoaAZoCWgPQwjfo/56hSk9wJSGlFKUaBVLjWgWR0BY+5j2Bas7dX2UKGgGaAloD0MIzhq8r0oPbcCUhpRSlGgVS81oFkdAWP7riVB2OnV9lChoBmgJaA9DCGNEotAyV2TAlIaUUpRoFUuWaBZHQFkAGYrrgO11fZQoaAZoCWgPQwjx9EpZRiZwwJSGlFKUaBVL2WgWR0BZBNtl7MPjdX2UKGgGaAloD0MI1GGFWz4ZWcCUhpRSlGgVTS8BaBZHQFkRq0+kgwJ1fZQoaAZoCWgPQwh1yThGsrciQJSGlFKUaBVLb2gWR0BZEhllK9PDdX2UKGgGaAloD0MIOiAJ+3Y7csCUhpRSlGgVS6xoFkdAWRRSQ5myxHV9lChoBmgJaA9DCKW8VkJ3CSjAlIaUUpRoFU0YAWgWR0BZHPE0iyIIdX2UKGgGaAloD0MIF50stV6AbsCUhpRSlGgVTQABaBZHQFkgOpbUwzt1fZQoaAZoCWgPQwjV52or9tlowJSGlFKUaBVNnwFoFkdAWSUGgSOBD3V9lChoBmgJaA9DCJM3wMx3KDPAlIaUUpRoFUttaBZHQFkmV9nbqQl1fZQoaAZoCWgPQwi8df7tsi8xQJSGlFKUaBVLpGgWR0BZKgh8pkPMdX2UKGgGaAloD0MIKjkn9tA+07+UhpRSlGgVS3ZoFkdAWS+rxRVIZ3V9lChoBmgJaA9DCM9nQL0Z3STAlIaUUpRoFUt5aBZHQFkxUxEfDDV1fZQoaAZoCWgPQwgdq5Se6SXjP5SGlFKUaBVLiGgWR0BZM6mwaBI4dX2UKGgGaAloD0MI5KHvbuXkYMCUhpRSlGgVS+VoFkdAWTTZTQ3PzHV9lChoBmgJaA9DCEPKT6p9gVnAlIaUUpRoFU0EAWgWR0BZOuzposZpdX2UKGgGaAloD0MIo+ar5CN7cMCUhpRSlGgVS+5oFkdAWT5gZ0jkdXV9lChoBmgJaA9DCMMstHOasT3AlIaUUpRoFUt/aBZHQFlEOkcjqwB1fZQoaAZoCWgPQwhbsFQX8DLZP5SGlFKUaBVLlGgWR0BZSRBNVR1pdX2UKGgGaAloD0MI2ht8YTKxPMCUhpRSlGgVS41oFkdAWVAHB1s+FHV9lChoBmgJaA9DCLWHvVDAtifAlIaUUpRoFUvLaBZHQFlR9AHE/B51fZQoaAZoCWgPQwjlfoeiQCVpwJSGlFKUaBVLlGgWR0BZVT4cm0E6dX2UKGgGaAloD0MIVMiVehbEDkCUhpRSlGgVS3JoFkdAWVeE4//vOXV9lChoBmgJaA9DCPg404TtH1jAlIaUUpRoFUu8aBZHQFloPkq+ajN1fZQoaAZoCWgPQwgd5ssLsH9AwJSGlFKUaBVLe2gWR0BZagf6oESvdX2UKGgGaAloD0MIUUoIVtVXQsCUhpRSlGgVS79oFkdAWWsUEgW8AnV9lChoBmgJaA9DCDwtP3CVSlzAlIaUUpRoFUvDaBZHQFlwtrKvFFV1fZQoaAZoCWgPQwhDHyxjQ6FNwJSGlFKUaBVLdGgWR0BZdJRsMy8BdX2UKGgGaAloD0MIzT0kfG+bYMCUhpRSlGgVS6ZoFkdAWXg4NqgyunV9lChoBmgJaA9DCFKZYg6CCEHAlIaUUpRoFUu5aBZHQFl5J+lTFVF1fZQoaAZoCWgPQwgcfGEyVYBIQJSGlFKUaBVLl2gWR0BZfN2TxG2DdX2UKGgGaAloD0MII2WLpN1mTMCUhpRSlGgVS9RoFkdAWYLq7iADrHV9lChoBmgJaA9DCIuKOJ1ke2zAlIaUUpRoFUviaBZHQFmGHARChOB1fZQoaAZoCWgPQwg2BTI7S+p1wJSGlFKUaBVNNQFoFkdAWYc3eenQ6nV9lChoBmgJaA9DCHQHsTOFS1PAlIaUUpRoFUvLaBZHQFmnRkVeruJ1fZQoaAZoCWgPQwj9vn/z4plTwJSGlFKUaBVL4mgWR0BZp8HKOktVdX2UKGgGaAloD0MIsTGvIw6hLUCUhpRSlGgVS6JoFkdAWaq7TUiIL3V9lChoBmgJaA9DCNm0Ugjk5ErAlIaUUpRoFUupaBZHQFm1wIt16mh1fZQoaAZoCWgPQwi0y7c+rCFawJSGlFKUaBVNAAFoFkdAWbgbyYoiLXV9lChoBmgJaA9DCFVpi2t85kfAlIaUUpRoFUudaBZHQFm4IomXw9d1fZQoaAZoCWgPQwiEg72JIUFCQJSGlFKUaBVLxmgWR0BZvJZW7voedX2UKGgGaAloD0MIVMiVehbsTsCUhpRSlGgVS6poFkdAWb7ollbu+nV9lChoBmgJaA9DCKaYg6CjB0hAlIaUUpRoFUusaBZHQFnFhQm/nGN1fZQoaAZoCWgPQwixTpXvGQhywJSGlFKUaBVL82gWR0BZztoi9qUNdX2UKGgGaAloD0MITuyhfawgasCUhpRSlGgVS7poFkdAWdVq33Hq/3V9lChoBmgJaA9DCJgTtMlh12vAlIaUUpRoFU03AWgWR0BZ1gpKBd2QdX2UKGgGaAloD0MIhH6mXrfYHUCUhpRSlGgVS+loFkdAWdczWPLgXXV9lChoBmgJaA9DCPvOL0rQM0zAlIaUUpRoFUvPaBZHQFne4gieNDN1fZQoaAZoCWgPQwh72XbaGn0+wJSGlFKUaBVLiWgWR0BZ4+V5a/yodX2UKGgGaAloD0MIYY4ev7eCWcCUhpRSlGgVS4poFkdAWfeCxu89OnV9lChoBmgJaA9DCN7H0RxZ70HAlIaUUpRoFUvBaBZHQFn8FGXokiV1fZQoaAZoCWgPQwj5wI7/AmNBwJSGlFKUaBVLvGgWR0BaCp44ZMtcdX2UKGgGaAloD0MIGLMlqyIQRcCUhpRSlGgVS5ZoFkdAWhdX2dupCXV9lChoBmgJaA9DCLh1N0/1EWnAlIaUUpRoFU0BAWgWR0BaH/aQFLWadX2UKGgGaAloD0MIzF62nbZmHMCUhpRSlGgVS6RoFkdAWiGg13t8eHV9lChoBmgJaA9DCCqRRC+jKCBAlIaUUpRoFUuYaBZHQFol7L+xW1d1fZQoaAZoCWgPQwjHKxA9KWZWwJSGlFKUaBVLwmgWR0BaJ5w84giedX2UKGgGaAloD0MICAWlaOU6W8CUhpRSlGgVS+NoFkdAWieiEg4ffXVlLg=="
70
+ },
71
+ "ep_success_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
74
+ },
75
+ "_n_updates": 32,
76
+ "n_steps": 1024,
77
+ "gamma": 0.99,
78
+ "gae_lambda": 0.95,
79
+ "ent_coef": 0.0,
80
+ "vf_coef": 0.5,
81
+ "max_grad_norm": 0.5,
82
+ "batch_size": 64,
83
+ "n_epochs": 4,
84
+ "clip_range": {
85
+ ":type:": "<class 'function'>",
86
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
87
+ },
88
+ "clip_range_vf": null,
89
+ "normalize_advantage": true,
90
+ "target_kl": null
91
+ }
lunar_landing/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a0f7e20c0d36be8642243b0a15f06f74a187d5ac476d0d7a632827b3b951f80
3
+ size 88057
lunar_landing/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a0b9e5454c863f94063a5ecc8dfe6a30babcdf2248cd4d29063cab42b45d231
3
+ size 43201
lunar_landing/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_landing/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (90.6 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -606.0229613794945, "std_reward": 190.89335927370888, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-18T04:23:50.684042"}