File size: 2,179 Bytes
90b38ef
 
 
9cec5b0
7dfc503
 
9cec5b0
 
 
 
e0e553e
e68d0b7
9cec5b0
 
188f815
f76498d
 
 
 
4afe3c6
23ce26c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b224257
23ce26c
 
 
 
 
 
 
 
b224257
 
23ce26c
b224257
 
 
 
 
 
23ce26c
 
 
 
 
4326f00
23ce26c
 
 
 
 
4326f00
23ce26c
 
 
 
5674326
 
 
 
23ce26c
9cec5b0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: cc0-1.0
---

**Note:** Due to nature of toxic comments data and code contain explicit language.

Data is from kaggle, the *Toxic Comment Classification Challenge*
<br>
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/data?select=train.csv.zip

A copy of the data exists on the `data` directory.

Trained over 20 epoch in a runpod

### 🤗 Running demo here:    
https://huggingface.co/spaces/vluz/Tox

<hr>

Code requires pandas, tensorflow, and streamlit. All can be installed via `pip`.

```python
import os
import pickle
import streamlit as st
import tensorflow as tf
from tensorflow.keras.layers import TextVectorization


@st.cache_resource
def load_model():
    model = tf.keras.models.load_model(os.path.join("model", "toxmodel.keras"))
    return model


@st.cache_resource
def load_vectorizer():
    from_disk = pickle.load(open(os.path.join("model", "vectorizer.pkl"), "rb"))
    new_v = TextVectorization.from_config(from_disk['config'])
    new_v.adapt(tf.data.Dataset.from_tensor_slices(["xyz"])) # fix for Keras bug
    new_v.set_weights(from_disk['weights'])
    return new_v


st.title("Toxic Comment Test")
st.divider()
model = load_model()
vectorizer = load_vectorizer()
default_prompt = "i love you man, but fuck you!"
input_text = st.text_area("Comment:", default_prompt, height=150).lower()
if st.button("Test"):
    if not input_text:
        st.write("⚠ Warning: Empty prompt.")
    elif len(input_text) < 15:
        st.write("⚠ Warning: Model is far less accurate with a small prompt.")
    if input_text == default_prompt:
        st.write("Expected results from default prompt are positive for 0 and 2")
    with st.spinner("Testing..."):
        inputv = vectorizer([input_text])
        output = model.predict(inputv)
        res = (output > 0.5)
    st.write(["toxic","severe toxic","obscene","threat","insult","identity hate"], res)
    st.write(output)
```


Put `toxmodel.keras` and `vectorizer.pkl` into the `model` dir.     

Then do:
```
stramlit run toxtest.py
```

Expected result from default prompt is 0 and 2

<hr>

Full code can be found here:
<br>
https://github.com/vluz/ToxTest/
<br>