File size: 7,429 Bytes
9bdbf4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import gzip
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig, AdamW
import sys
import torch
import transformers
from torch.utils.data import Dataset, DataLoader
from torch.cuda.amp import autocast
import tqdm
from datetime import datetime
from shutil import copyfile
import os
####################################

import gzip
from collections import defaultdict
import logging
import tqdm
import numpy as np
import sys
import pytrec_eval
from sentence_transformers import SentenceTransformer, util, CrossEncoder
import torch


######### Evaluation
queries_filepath = '/home/msmarco/data/trec2019/msmarco-test2019-queries.tsv.gz'
queries_eval = {}
with gzip.open(queries_filepath, 'rt', encoding='utf8') as fIn:
    for line in fIn:
        qid, query = line.strip().split("\t")[0:2]
        queries_eval[qid] = query

rel = defaultdict(lambda: defaultdict(int))

with open('/home/msmarco/data/trec2019/2019qrels-pass.txt') as fIn:
    for line in fIn:
        qid, _, pid, score = line.strip().split()
        score = int(score)
        if score > 0:
            rel[qid][pid] = score

relevant_qid = []
for qid in queries_eval:
    if len(rel[qid]) > 0:
        relevant_qid.append(qid)

# Read top 1k
passage_cand = {}

with gzip.open('/home/msmarco/data/trec2019/msmarco-passagetest2019-top1000.tsv.gz', 'rt', encoding='utf8') as fIn:
    for line in fIn:
        qid, pid, query, passage = line.strip().split("\t")
        if qid not in passage_cand:
            passage_cand[qid] = []

        passage_cand[qid].append([pid, passage])



def eval_modal(model_path):
    run = {}
    model = CrossEncoder(model_path, max_length=512)

    for qid in relevant_qid:
        query = queries_eval[qid]

        cand = passage_cand[qid]
        pids = [c[0] for c in cand]
        corpus_sentences = [c[1] for c in cand]

        ## CrossEncoder
        cross_inp = [[query, sent] for sent in corpus_sentences]
        if model.config.num_labels > 1:
            cross_scores = model.predict(cross_inp, apply_softmax=True)[:, 1].tolist()
        else:
            cross_scores = model.predict(cross_inp, activation_fct=torch.nn.Identity()).tolist()

        cross_scores_sparse = {}
        for idx, pid in enumerate(pids):
            cross_scores_sparse[pid] = cross_scores[idx]

        sparse_scores = cross_scores_sparse
        run[qid] = {}
        for pid in sparse_scores:
            run[qid][pid] = float(sparse_scores[pid])

    evaluator = pytrec_eval.RelevanceEvaluator(rel, {'ndcg_cut.10'})
    scores = evaluator.evaluate(run)
    scores_mean = np.mean([ele["ndcg_cut_10"] for ele in scores.values()])

    print("NDCG@10: {:.2f}".format(scores_mean * 100))
    return scores_mean

################################

model_name = sys.argv[1]

device = 'cuda' if torch.cuda.is_available() else 'cpu'
config = AutoConfig.from_pretrained(model_name)
config.num_labels = 1
model = AutoModelForSequenceClassification.from_pretrained(model_name, config=config)
tokenizer = AutoTokenizer.from_pretrained(model_name)

## Freeze embedding layer
model.distilbert.embeddings.word_embeddings.requires_grad_(False)





#######################

queries = {}
corpus = {}

output_save_path = 'output-ce-emb_frozen/{}-{}'.format(model_name.replace("/", "-"), datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
output_save_path_latest = output_save_path+"-latest"
tokenizer.save_pretrained(output_save_path)
tokenizer.save_pretrained(output_save_path_latest)


# Write self to path
train_script_path = os.path.join(output_save_path, 'train_script.py')
copyfile(__file__, train_script_path)
with open(train_script_path, 'a') as fOut:
    fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))


####
train_script_path = os.path.join(output_save_path_latest, 'train_script.py')
copyfile(__file__, train_script_path)
with open(train_script_path, 'a') as fOut:
    fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))



#### Read train file
with gzip.open('/home/msmarco/data/collection.tsv.gz', 'rt') as fIn:
    for line in fIn:
        pid, passage = line.strip().split("\t")
        corpus[pid] = passage

with open('/home/msmarco/data/queries.train.tsv', 'r') as fIn:
    for line in fIn:
        qid, query = line.strip().split("\t")
        queries[qid] = query


############## Train Dataset
class MSEDataset(Dataset):
    def __init__(self, filepath):
        super().__init__()

        self.examples = []
        with open(filepath) as fIn:
            for line in fIn:
                pos_score, neg_score, qid, pid1, pid2 = line.strip().split("\t")
                self.examples.append([qid, pid1, pid2, float(pos_score)-float(neg_score)])

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, item):
        return self.examples[item]

train_batch_size = 32
train_dataset = MSEDataset('/home/msmarco/data/bert_cat_ensemble_msmarcopassage_train_scores_ids.tsv')
train_dataloader = DataLoader(train_dataset, drop_last=True, shuffle=True, batch_size=16)


############## Optimizer

weight_decay = 0.01
max_grad_norm = 1
param_optimizer = list(model.named_parameters())

no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
    {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': weight_decay},
    {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]

optimizer = AdamW(optimizer_grouped_parameters, lr=1e-5)
scheduler = transformers.get_linear_schedule_with_warmup(optimizer, num_warmup_steps=1000, num_training_steps=len(train_dataloader))
scaler = torch.cuda.amp.GradScaler()

loss_fct = torch.nn.MSELoss()
### Start training
model.to(device)

auto_save = 10000
best_ndcg_score = 0
for step_idx, batch in tqdm.tqdm(enumerate(train_dataloader), total=len(train_dataloader)):
    batch_queries = [queries[qid] for qid in batch[0]]
    pos = [corpus[cid] for cid in batch[1]]
    neg = [corpus[cid] for cid in batch[2]]
    scores = batch[3].float().to(device)    #torch.tensor(batch[3], dtype=torch.float, device=device)

    with autocast():
        inp_pos = tokenizer(batch_queries, pos, max_length=512, padding=True, truncation='longest_first', return_tensors='pt').to(device)
        pred_pos = model(**inp_pos).logits.squeeze()

        inp_neg = tokenizer(batch_queries, neg, max_length=512, padding=True, truncation='longest_first', return_tensors='pt').to(device)
        pred_neg = model(**inp_neg).logits.squeeze()

        pred_diff = pred_pos - pred_neg
        loss_value = loss_fct(pred_diff, scores)

    
    scaler.scale(loss_value).backward()
    scaler.unscale_(optimizer)
    torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
    scaler.step(optimizer)
    scaler.update()

    optimizer.zero_grad()
    scheduler.step()

    if (step_idx+1) % auto_save == 0:
        print("Step:", step_idx+1)
        model.save_pretrained(output_save_path_latest)
        ndcg_score = eval_modal(output_save_path_latest)

        if ndcg_score >= best_ndcg_score:
            best_ndcg_score = ndcg_score
            print("Save to:", output_save_path)
            model.save_pretrained(output_save_path)

model.save_pretrained(output_save_path)


# Script was called via:
#python train_ce_emb_frozen.py nicoladecao/msmarco-word2vec256000-distilbert-base-uncased