upload
Browse files- README.md +4 -0
- config.json +24 -0
- optimizer.pt +3 -0
- pytorch_model.bin +3 -0
- rng_state.pth +3 -0
- scaler.pt +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- train_mlm.py +120 -0
- trainer_state.json +0 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Model
|
2 |
+
This model is based on [nicoladecao/msmarco-word2vec256000-distilbert-base-uncased](https://huggingface.co/nicoladecao/msmarco-word2vec256000-distilbert-base-uncased) with a 256k sized vocabulary initialized with word2vec.
|
3 |
+
|
4 |
+
This model has been trained with MLM on the MS MARCO corpus collection for 785k steps. See train_mlm.py for the train script. It was run on 2x V100 GPUs.
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nicoladecao/msmarco-word2vec256000-distilbert-base-uncased",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertForMaskedLM"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "distilbert",
|
14 |
+
"n_heads": 12,
|
15 |
+
"n_layers": 6,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"qa_dropout": 0.1,
|
18 |
+
"seq_classif_dropout": 0.2,
|
19 |
+
"sinusoidal_pos_embds": false,
|
20 |
+
"tie_weights_": true,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.11.3",
|
23 |
+
"vocab_size": 256000
|
24 |
+
}
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97f15c6cccafd5d4089a325975a832e9a1018433837bbc916ea8852479da4d75
|
3 |
+
size 1923091089
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4f0b1d6bcd5243bf53b6642edde75a1fc9cf373621f4ba769c5a2efc6709604
|
3 |
+
size 961556128
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d60ff5acb082523e24c835896668276215e7ae5eac18a73b8f441b1bc6b3016
|
3 |
+
size 15627
|
scaler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d025cb0ee33c6293476260c023fa11bf10b08c5018f876fe1c66195959ef7fa
|
3 |
+
size 559
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10e3aa981717cb28f2f71ae0329b50c74a68e64df4ea605e3e704ddcb43fd901
|
3 |
+
size 623
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "model_input_names": ["input_ids", "attention_mask"], "tokenizer_class": "PreTrainedTokenizerFast", "special_tokens_map_file": "/home/ukp-reimers/.cache/huggingface/transformers/fe09c361189d8238b9e387f10a088e93f70620bfe74b82036baff1fed512a153.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d", "name_or_path": "nicoladecao/msmarco-word2vec256000-distilbert-base-uncased"}
|
train_mlm.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file runs Masked Language Model. You provide a training file. Each line is interpreted as a sentence / paragraph.
|
3 |
+
Optionally, you can also provide a dev file.
|
4 |
+
|
5 |
+
The fine-tuned model is stored in the output/model_name folder.
|
6 |
+
|
7 |
+
python train_mlm.py model_name data/train_sentences.txt [data/dev_sentences.txt]
|
8 |
+
"""
|
9 |
+
|
10 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
11 |
+
from transformers import DataCollatorForLanguageModeling, DataCollatorForWholeWordMask
|
12 |
+
from transformers import Trainer, TrainingArguments
|
13 |
+
import sys
|
14 |
+
import gzip
|
15 |
+
from datetime import datetime
|
16 |
+
import wandb
|
17 |
+
|
18 |
+
wandb.init(project="bert-word2vec")
|
19 |
+
|
20 |
+
model_name = "nicoladecao/msmarco-word2vec256000-distilbert-base-uncased"
|
21 |
+
per_device_train_batch_size = 16
|
22 |
+
save_steps = 5000
|
23 |
+
eval_steps = 1000
|
24 |
+
num_train_epochs = 3
|
25 |
+
use_fp16 = True #Set to True, if your GPU supports FP16 operations
|
26 |
+
max_length = 250 #Max length for a text input
|
27 |
+
do_whole_word_mask = True #If set to true, whole words are masked
|
28 |
+
mlm_prob = 15 #Probability that a word is replaced by a [MASK] token
|
29 |
+
|
30 |
+
model = AutoModelForMaskedLM.from_pretrained(model_name)
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
32 |
+
|
33 |
+
## Freeze embedding layer
|
34 |
+
model.distilbert.embeddings.requires_grad = False
|
35 |
+
|
36 |
+
output_dir = "output/{}-{}".format(model_name.replace("/", "_"), datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
|
37 |
+
print("Save checkpoints to:", output_dir)
|
38 |
+
|
39 |
+
|
40 |
+
##### Load our training datasets
|
41 |
+
|
42 |
+
train_sentences = []
|
43 |
+
train_path = 'data/train.txt'
|
44 |
+
with gzip.open(train_path, 'rt', encoding='utf8') if train_path.endswith('.gz') else open(train_path, 'r', encoding='utf8') as fIn:
|
45 |
+
for line in fIn:
|
46 |
+
line = line.strip()
|
47 |
+
if len(line) >= 10:
|
48 |
+
train_sentences.append(line)
|
49 |
+
|
50 |
+
print("Train sentences:", len(train_sentences))
|
51 |
+
|
52 |
+
dev_sentences = []
|
53 |
+
|
54 |
+
dev_path = 'data/dev.txt'
|
55 |
+
with gzip.open(dev_path, 'rt', encoding='utf8') if dev_path.endswith('.gz') else open(dev_path, 'r', encoding='utf8') as fIn:
|
56 |
+
for line in fIn:
|
57 |
+
line = line.strip()
|
58 |
+
if len(line) >= 10:
|
59 |
+
dev_sentences.append(line)
|
60 |
+
|
61 |
+
print("Dev sentences:", len(dev_sentences))
|
62 |
+
|
63 |
+
#A dataset wrapper, that tokenizes our data on-the-fly
|
64 |
+
class TokenizedSentencesDataset:
|
65 |
+
def __init__(self, sentences, tokenizer, max_length, cache_tokenization=False):
|
66 |
+
self.tokenizer = tokenizer
|
67 |
+
self.sentences = sentences
|
68 |
+
self.max_length = max_length
|
69 |
+
self.cache_tokenization = cache_tokenization
|
70 |
+
|
71 |
+
def __getitem__(self, item):
|
72 |
+
if not self.cache_tokenization:
|
73 |
+
return self.tokenizer(self.sentences[item], add_special_tokens=True, truncation=True, max_length=self.max_length, return_special_tokens_mask=True)
|
74 |
+
|
75 |
+
if isinstance(self.sentences[item], str):
|
76 |
+
self.sentences[item] = self.tokenizer(self.sentences[item], add_special_tokens=True, truncation=True, max_length=self.max_length, return_special_tokens_mask=True)
|
77 |
+
return self.sentences[item]
|
78 |
+
|
79 |
+
def __len__(self):
|
80 |
+
return len(self.sentences)
|
81 |
+
|
82 |
+
train_dataset = TokenizedSentencesDataset(train_sentences, tokenizer, max_length)
|
83 |
+
dev_dataset = TokenizedSentencesDataset(dev_sentences, tokenizer, max_length, cache_tokenization=True) if len(dev_sentences) > 0 else None
|
84 |
+
|
85 |
+
|
86 |
+
##### Training arguments
|
87 |
+
|
88 |
+
if do_whole_word_mask:
|
89 |
+
data_collator = DataCollatorForWholeWordMask(tokenizer=tokenizer, mlm=True, mlm_probability=mlm_prob)
|
90 |
+
else:
|
91 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=True, mlm_probability=mlm_prob)
|
92 |
+
|
93 |
+
training_args = TrainingArguments(
|
94 |
+
output_dir=output_dir,
|
95 |
+
overwrite_output_dir=True,
|
96 |
+
num_train_epochs=num_train_epochs,
|
97 |
+
evaluation_strategy="steps" if dev_dataset is not None else "no",
|
98 |
+
per_device_train_batch_size=per_device_train_batch_size,
|
99 |
+
eval_steps=eval_steps,
|
100 |
+
save_steps=save_steps,
|
101 |
+
save_total_limit=1,
|
102 |
+
prediction_loss_only=True,
|
103 |
+
fp16=use_fp16
|
104 |
+
)
|
105 |
+
|
106 |
+
trainer = Trainer(
|
107 |
+
model=model,
|
108 |
+
args=training_args,
|
109 |
+
data_collator=data_collator,
|
110 |
+
train_dataset=train_dataset,
|
111 |
+
eval_dataset=dev_dataset
|
112 |
+
)
|
113 |
+
|
114 |
+
trainer.train()
|
115 |
+
|
116 |
+
print("Save model to:", output_dir)
|
117 |
+
model.save_pretrained(output_dir)
|
118 |
+
tokenizer.save_pretrained(output_dir)
|
119 |
+
|
120 |
+
print("Training done")
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5f6c16d5e3fb714d6d4b43f9e3d9077909eaef9723b3c5411687a5655ef2ca4
|
3 |
+
size 2991
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|