asahi417 commited on
Commit
8e11046
1 Parent(s): 4b504e8

commit files to HF hub

Browse files
README.md CHANGED
@@ -33,27 +33,27 @@ model-index:
33
  metrics:
34
  - name: BLEU4 (Question Generation)
35
  type: bleu4_question_generation
36
- value: 0.0
37
  - name: ROUGE-L (Question Generation)
38
  type: rouge_l_question_generation
39
- value: 0.46
40
  - name: METEOR (Question Generation)
41
  type: meteor_question_generation
42
- value: 0.37
43
  - name: BERTScore (Question Generation)
44
  type: bertscore_question_generation
45
- value: 56.13
46
  - name: MoverScore (Question Generation)
47
  type: moverscore_question_generation
48
- value: 45.75
49
  ---
50
 
51
  # Model Card of `vocabtrimmer/mt5-small-trimmed-it-15000-itquad-qg`
52
- This model is fine-tuned version of [vocabtrimmer/mt5-small-trimmed-it-15000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-it-15000) for question generation task on the [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
53
 
54
 
55
  ### Overview
56
- - **Language model:** [vocabtrimmer/mt5-small-trimmed-it-15000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-it-15000)
57
  - **Language:** it
58
  - **Training data:** [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (default)
59
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
@@ -89,14 +89,14 @@ output = pipe("<hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi
89
 
90
  | | Score | Type | Dataset |
91
  |:-----------|--------:|:--------|:-----------------------------------------------------------------|
92
- | BERTScore | 56.13 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
93
- | Bleu_1 | 0.49 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
94
- | Bleu_2 | 0 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
95
- | Bleu_3 | 0 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
96
- | Bleu_4 | 0 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
97
- | METEOR | 0.37 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
98
- | MoverScore | 45.75 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
99
- | ROUGE_L | 0.46 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
100
 
101
 
102
 
@@ -108,12 +108,12 @@ The following hyperparameters were used during fine-tuning:
108
  - input_types: paragraph_answer
109
  - output_types: question
110
  - prefix_types: None
111
- - model: vocabtrimmer/mt5-small-trimmed-it-15000
112
  - max_length: 512
113
  - max_length_output: 32
114
- - epoch: 5
115
  - batch: 16
116
- - lr: 0.0005
117
  - fp16: False
118
  - random_seed: 1
119
  - gradient_accumulation_steps: 4
 
33
  metrics:
34
  - name: BLEU4 (Question Generation)
35
  type: bleu4_question_generation
36
+ value: 7.39
37
  - name: ROUGE-L (Question Generation)
38
  type: rouge_l_question_generation
39
+ value: 21.97
40
  - name: METEOR (Question Generation)
41
  type: meteor_question_generation
42
+ value: 17.97
43
  - name: BERTScore (Question Generation)
44
  type: bertscore_question_generation
45
+ value: 80.84
46
  - name: MoverScore (Question Generation)
47
  type: moverscore_question_generation
48
+ value: 56.84
49
  ---
50
 
51
  # Model Card of `vocabtrimmer/mt5-small-trimmed-it-15000-itquad-qg`
52
+ This model is fine-tuned version of [ckpts/mt5-small-trimmed-it-15000](https://huggingface.co/ckpts/mt5-small-trimmed-it-15000) for question generation task on the [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
53
 
54
 
55
  ### Overview
56
+ - **Language model:** [ckpts/mt5-small-trimmed-it-15000](https://huggingface.co/ckpts/mt5-small-trimmed-it-15000)
57
  - **Language:** it
58
  - **Training data:** [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (default)
59
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
 
89
 
90
  | | Score | Type | Dataset |
91
  |:-----------|--------:|:--------|:-----------------------------------------------------------------|
92
+ | BERTScore | 80.84 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
93
+ | Bleu_1 | 22.63 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
94
+ | Bleu_2 | 14.89 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
95
+ | Bleu_3 | 10.35 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
96
+ | Bleu_4 | 7.39 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
97
+ | METEOR | 17.97 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
98
+ | MoverScore | 56.84 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
99
+ | ROUGE_L | 21.97 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) |
100
 
101
 
102
 
 
108
  - input_types: paragraph_answer
109
  - output_types: question
110
  - prefix_types: None
111
+ - model: ckpts/mt5-small-trimmed-it-15000
112
  - max_length: 512
113
  - max_length_output: 32
114
+ - epoch: 13
115
  - batch: 16
116
+ - lr: 0.001
117
  - fp16: False
118
  - random_seed: 1
119
  - gradient_accumulation_steps: 4
eval/metric.first.answer.paragraph_answer.question.lmqg_qg_itquad.default.json CHANGED
@@ -1 +1 @@
1
- {"validation": {"Bleu_1": 0.004567010551539636, "Bleu_2": 7.839137355436766e-12, "Bleu_3": 9.782026035497752e-15, "Bleu_4": 3.579750541003946e-16}, "test": {"Bleu_1": 0.004522989430174668, "Bleu_2": 7.723312821853149e-12, "Bleu_3": 9.62131954572275e-15, "Bleu_4": 3.518167352053418e-16}}
 
1
+ {"validation": {"Bleu_1": 0.2237564812373646, "Bleu_2": 0.14753299950187648, "Bleu_3": 0.10280911146604187, "Bleu_4": 0.07377165022174957}, "test": {"Bleu_1": 0.21637282038578534, "Bleu_2": 0.14133164217029193, "Bleu_3": 0.09786654734350055, "Bleu_4": 0.06969957830640872}}
eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_itquad.default.json CHANGED
@@ -1 +1 @@
1
- {"validation": {"Bleu_1": 0.0046197154338936145, "Bleu_2": 7.940249897814446e-12, "Bleu_3": 9.912802285169916e-15, "Bleu_4": 3.6285094356569344e-16, "METEOR": 0.0033732694546279363, "ROUGE_L": 0.0043499135820432395, "BERTScore": 0.5613967677697813, "MoverScore": 0.4577550994954912}, "test": {"Bleu_1": 0.004860953588974441, "Bleu_2": 8.433995825221792e-12, "Bleu_3": 1.0563157088977527e-14, "Bleu_4": 3.8730904015401617e-16, "METEOR": 0.00367127674240513, "ROUGE_L": 0.004590781821751085, "BERTScore": 0.561251641597745, "MoverScore": 0.4574736142731061}}
 
1
+ {"validation": {"Bleu_1": 0.2247477276014349, "Bleu_2": 0.14836169499852286, "Bleu_3": 0.10348632514370129, "Bleu_4": 0.07432240696181995, "METEOR": 0.18438518959925088, "ROUGE_L": 0.22044772480710642, "BERTScore": 0.8135221853181978, "MoverScore": 0.5731971716488695}, "test": {"Bleu_1": 0.2263010379800928, "Bleu_2": 0.14893781520324303, "Bleu_3": 0.1035047817498138, "Bleu_4": 0.07385948007263937, "METEOR": 0.17973493970970986, "ROUGE_L": 0.21971071493386257, "BERTScore": 0.808444913420041, "MoverScore": 0.5683878416606393}}
eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_itquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_itquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff