commit files to HF hub
Browse files- README.md +16 -16
- eval/metric.first.answer.paragraph_answer.question.lmqg_qg_koquad.default.json +1 -1
- eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_koquad.default.json +1 -1
- eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_koquad.default.txt +0 -0
- eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_koquad.default.txt +0 -0
README.md
CHANGED
@@ -33,27 +33,27 @@ model-index:
|
|
33 |
metrics:
|
34 |
- name: BLEU4 (Question Generation)
|
35 |
type: bleu4_question_generation
|
36 |
-
value:
|
37 |
- name: ROUGE-L (Question Generation)
|
38 |
type: rouge_l_question_generation
|
39 |
-
value: 26.
|
40 |
- name: METEOR (Question Generation)
|
41 |
type: meteor_question_generation
|
42 |
-
value: 28.
|
43 |
- name: BERTScore (Question Generation)
|
44 |
type: bertscore_question_generation
|
45 |
-
value: 83.
|
46 |
- name: MoverScore (Question Generation)
|
47 |
type: moverscore_question_generation
|
48 |
-
value: 82.
|
49 |
---
|
50 |
|
51 |
# Model Card of `vocabtrimmer/mt5-small-trimmed-ko-30000-koquad-qg`
|
52 |
-
This model is fine-tuned version of [
|
53 |
|
54 |
|
55 |
### Overview
|
56 |
-
- **Language model:** [
|
57 |
- **Language:** ko
|
58 |
- **Training data:** [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (default)
|
59 |
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
|
@@ -89,14 +89,14 @@ output = pipe("1990년 영화 《 <hl> 남부군 <hl> 》에서 단역으로 영
|
|
89 |
|
90 |
| | Score | Type | Dataset |
|
91 |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
|
92 |
-
| BERTScore | 83.
|
93 |
-
| Bleu_1 |
|
94 |
-
| Bleu_2 |
|
95 |
-
| Bleu_3 | 14.
|
96 |
-
| Bleu_4 |
|
97 |
-
| METEOR | 28.
|
98 |
-
| MoverScore | 82.
|
99 |
-
| ROUGE_L | 26.
|
100 |
|
101 |
|
102 |
|
@@ -108,7 +108,7 @@ The following hyperparameters were used during fine-tuning:
|
|
108 |
- input_types: paragraph_answer
|
109 |
- output_types: question
|
110 |
- prefix_types: None
|
111 |
-
- model:
|
112 |
- max_length: 512
|
113 |
- max_length_output: 32
|
114 |
- epoch: 13
|
|
|
33 |
metrics:
|
34 |
- name: BLEU4 (Question Generation)
|
35 |
type: bleu4_question_generation
|
36 |
+
value: 10.61
|
37 |
- name: ROUGE-L (Question Generation)
|
38 |
type: rouge_l_question_generation
|
39 |
+
value: 26.37
|
40 |
- name: METEOR (Question Generation)
|
41 |
type: meteor_question_generation
|
42 |
+
value: 28.36
|
43 |
- name: BERTScore (Question Generation)
|
44 |
type: bertscore_question_generation
|
45 |
+
value: 83.14
|
46 |
- name: MoverScore (Question Generation)
|
47 |
type: moverscore_question_generation
|
48 |
+
value: 82.55
|
49 |
---
|
50 |
|
51 |
# Model Card of `vocabtrimmer/mt5-small-trimmed-ko-30000-koquad-qg`
|
52 |
+
This model is fine-tuned version of [ckpts/mt5-small-trimmed-ko-30000](https://huggingface.co/ckpts/mt5-small-trimmed-ko-30000) for question generation task on the [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
|
53 |
|
54 |
|
55 |
### Overview
|
56 |
+
- **Language model:** [ckpts/mt5-small-trimmed-ko-30000](https://huggingface.co/ckpts/mt5-small-trimmed-ko-30000)
|
57 |
- **Language:** ko
|
58 |
- **Training data:** [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) (default)
|
59 |
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
|
|
|
89 |
|
90 |
| | Score | Type | Dataset |
|
91 |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
|
92 |
+
| BERTScore | 83.14 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
93 |
+
| Bleu_1 | 25.72 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
94 |
+
| Bleu_2 | 18.86 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
95 |
+
| Bleu_3 | 14.11 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
96 |
+
| Bleu_4 | 10.61 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
97 |
+
| METEOR | 28.36 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
98 |
+
| MoverScore | 82.55 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
99 |
+
| ROUGE_L | 26.37 | default | [lmqg/qg_koquad](https://huggingface.co/datasets/lmqg/qg_koquad) |
|
100 |
|
101 |
|
102 |
|
|
|
108 |
- input_types: paragraph_answer
|
109 |
- output_types: question
|
110 |
- prefix_types: None
|
111 |
+
- model: ckpts/mt5-small-trimmed-ko-30000
|
112 |
- max_length: 512
|
113 |
- max_length_output: 32
|
114 |
- epoch: 13
|
eval/metric.first.answer.paragraph_answer.question.lmqg_qg_koquad.default.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"validation": {"Bleu_1": 0.
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.24730736546708076, "Bleu_2": 0.1805983914991622, "Bleu_3": 0.1351955480215265, "Bleu_4": 0.10231659467122803}, "test": {"Bleu_1": 0.25455346945317786, "Bleu_2": 0.1863540355869153, "Bleu_3": 0.13936333895222536, "Bleu_4": 0.10474075691207706}}
|
eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_koquad.default.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"validation": {"Bleu_1": 0.
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.28085530108484147, "Bleu_2": 0.20911529775293766, "Bleu_3": 0.15882842796765106, "Bleu_4": 0.12147030166216247, "METEOR": 0.2915895823700915, "ROUGE_L": 0.2777341588464828, "BERTScore": 0.8262767547406025, "MoverScore": 0.8290985232230139}, "test": {"Bleu_1": 0.2572168231595764, "Bleu_2": 0.188564208617832, "Bleu_3": 0.1411121095117522, "Bleu_4": 0.10605364538839222, "METEOR": 0.2835661755929325, "ROUGE_L": 0.2636899241048791, "BERTScore": 0.8313739765866779, "MoverScore": 0.825547462170264}}
|
eval/samples.test.hyp.paragraph_answer.question.lmqg_qg_koquad.default.txt
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.validation.hyp.paragraph_answer.question.lmqg_qg_koquad.default.txt
CHANGED
The diff for this file is too large to render.
See raw diff
|
|