Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.55 +/- 0.86
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4004b67f4df76d2ec79813f3a051190f442c07f3a99d053c7e8c2ca28ca2295f
|
3 |
+
size 108064
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2afef59e10>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f2afef4f1c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1681709398506381890,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFAvaG9tZS92b3ZhLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUC9ob21lL3ZvdmEvLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIpzHPvTALr2u6hk/IpzHPvTALr2u6hk/IpzHPvTALr2u6hk/IpzHPvTALr2u6hk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaejRv94E1T/ziqe8bxirPctnSb6NANa+eESzvy1BQr792kU+V8OrP4znyr9wFnc/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAinMc+9MAuva7qGT/WB1a8fquZu/PfgrwinMc+9MAuva7qGT/WB1a8fquZu/PfgrwinMc+9MAuva7qGT/WB1a8fquZu/PfgrwinMc+9MAuva7qGT/WB1a8fquZu/PfgryUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.38986307 -0.04266448 0.6012372 ]\n [ 0.38986307 -0.04266448 0.6012372 ]\n [ 0.38986307 -0.04266448 0.6012372 ]\n [ 0.38986307 -0.04266448 0.6012372 ]]",
|
38 |
+
"desired_goal": "[[-1.6399051 1.664211 -0.020452 ]\n [ 0.0835427 -0.196685 -0.41797295]\n [-1.400527 -0.18970175 0.19321819]\n [ 1.3418988 -1.5851912 0.9651861 ]]",
|
39 |
+
"observation": "[[ 0.38986307 -0.04266448 0.6012372 -0.01306339 -0.00468963 -0.01597593]\n [ 0.38986307 -0.04266448 0.6012372 -0.01306339 -0.00468963 -0.01597593]\n [ 0.38986307 -0.04266448 0.6012372 -0.01306339 -0.00468963 -0.01597593]\n [ 0.38986307 -0.04266448 0.6012372 -0.01306339 -0.00468963 -0.01597593]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiE7pPCQUqzwPTZs8XKYBvMfQCL4Kvmo+ulVdPEGlub06VYg+ettSPQWlA747RL89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.02847983 0.02088363 0.01895764]\n [-0.0079132 -0.13360892 0.22924057]\n [ 0.01350921 -0.09064723 0.26627523]\n [ 0.05147884 -0.12855919 0.09339186]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIX+/+eK+6C8CUhpRSlIwBbJRLMowBdJRHQMFNRL/0dzZ1fZQoaAZoCWgPQwgIrvIEwu4CwJSGlFKUaBVLMmgWR0DBTRwlD4QCdX2UKGgGaAloD0MI4bTgRV8BCcCUhpRSlGgVSzJoFkdAwUzyeuFHrnV9lChoBmgJaA9DCMvydRn+0/6/lIaUUpRoFUsyaBZHQMFMyIgFHJ91fZQoaAZoCWgPQwjFyJI5ljf7v5SGlFKUaBVLMmgWR0DBTikMiKR/dX2UKGgGaAloD0MIBi6PNSPD+b+UhpRSlGgVSzJoFkdAwU4Av4dp7HV9lChoBmgJaA9DCEM3+wPlFgPAlIaUUpRoFUsyaBZHQMFN1yh8IAx1fZQoaAZoCWgPQwgRVmMJa+MGwJSGlFKUaBVLMmgWR0DBTa0UoKD1dX2UKGgGaAloD0MIAKyOHOnM/r+UhpRSlGgVSzJoFkdAwU8FIp6QeXV9lChoBmgJaA9DCMB2MGKfoAzAlIaUUpRoFUsyaBZHQMFO3JblijN1fZQoaAZoCWgPQwhxOslWl5MKwJSGlFKUaBVLMmgWR0DBTrLposZpdX2UKGgGaAloD0MIIToEjgTa/7+UhpRSlGgVSzJoFkdAwU6I4lQdj3V9lChoBmgJaA9DCODaiZKQqATAlIaUUpRoFUsyaBZHQMFP3TWGyop1fZQoaAZoCWgPQwjZXDXPEXn9v5SGlFKUaBVLMmgWR0DBT7USPEKmdX2UKGgGaAloD0MIpI6Oq5Fd+r+UhpRSlGgVSzJoFkdAwU+LfP5YYHV9lChoBmgJaA9DCH6P+usV9gXAlIaUUpRoFUsyaBZHQMFPYboKUml1fZQoaAZoCWgPQwhGJXUCmugBwJSGlFKUaBVLMmgWR0DBULc1yeZodX2UKGgGaAloD0MITYHMzqL3D8CUhpRSlGgVSzJoFkdAwVCOttALRnV9lChoBmgJaA9DCL+bbtkhvvu/lIaUUpRoFUsyaBZHQMFQZT987ZF1fZQoaAZoCWgPQwjYZI16iEb1v5SGlFKUaBVLMmgWR0DBUDtVJcxCdX2UKGgGaAloD0MIhllo5zRrBMCUhpRSlGgVSzJoFkdAwVGNRMN+b3V9lChoBmgJaA9DCMbDew4sRwvAlIaUUpRoFUsyaBZHQMFRZMhgVoJ1fZQoaAZoCWgPQwgAdJgvL4ACwJSGlFKUaBVLMmgWR0DBUTsju8brdX2UKGgGaAloD0MI63Qg66nVBsCUhpRSlGgVSzJoFkdAwVERhVlwtXV9lChoBmgJaA9DCJinc0UpQQnAlIaUUpRoFUsyaBZHQMFSdGeDnNh1fZQoaAZoCWgPQwgibeNPVFYEwJSGlFKUaBVLMmgWR0DBUkv4REncdX2UKGgGaAloD0MICwqDMo0m/7+UhpRSlGgVSzJoFkdAwVIiafjCHnV9lChoBmgJaA9DCH8XtmYrDwPAlIaUUpRoFUsyaBZHQMFR+Lsrupl1fZQoaAZoCWgPQwgHQNzVq4gIwJSGlFKUaBVLMmgWR0DBU1A7T2FndX2UKGgGaAloD0MID0WBPpGHA8CUhpRSlGgVSzJoFkdAwVMnj4Hoo3V9lChoBmgJaA9DCAZINIEiVgTAlIaUUpRoFUsyaBZHQMFS/g57w8Z1fZQoaAZoCWgPQwgWhzO/mkMHwJSGlFKUaBVLMmgWR0DBUtQh+vyLdX2UKGgGaAloD0MI81oJ3SUhEsCUhpRSlGgVSzJoFkdAwVQyDf3vhXV9lChoBmgJaA9DCD/EBgsniQrAlIaUUpRoFUsyaBZHQMFUCZN47ih1fZQoaAZoCWgPQwh8KTxodl3/v5SGlFKUaBVLMmgWR0DBU+AUi6g/dX2UKGgGaAloD0MIweWxZmRQ+r+UhpRSlGgVSzJoFkdAwVO2dZJTVHV9lChoBmgJaA9DCGv0aoDSkAnAlIaUUpRoFUsyaBZHQMFVDQT238Z1fZQoaAZoCWgPQwjWcmcmGI7/v5SGlFKUaBVLMmgWR0DBVORtWMjvdX2UKGgGaAloD0MIsTbGTngJ87+UhpRSlGgVSzJoFkdAwVS7Av+OwXV9lChoBmgJaA9DCGKiQQqeAvW/lIaUUpRoFUsyaBZHQMFUkTLW7OF1fZQoaAZoCWgPQwhVhJuMKsMAwJSGlFKUaBVLMmgWR0DBVfAysS00dX2UKGgGaAloD0MIUgq6vaQx/L+UhpRSlGgVSzJoFkdAwVXHvAoG6nV9lChoBmgJaA9DCGajc36KgwXAlIaUUpRoFUsyaBZHQMFVnjk+5e91fZQoaAZoCWgPQwg02NR5VLwIwJSGlFKUaBVLMmgWR0DBVXSBiCrcdX2UKGgGaAloD0MIQdXo1QAl9r+UhpRSlGgVSzJoFkdAwVbSqH4463V9lChoBmgJaA9DCB+6oL5lbgnAlIaUUpRoFUsyaBZHQMFWqhjvuw51fZQoaAZoCWgPQwgxzXSvk1oLwJSGlFKUaBVLMmgWR0DBVoCFh5PedX2UKGgGaAloD0MI4zjwarkz/b+UhpRSlGgVSzJoFkdAwVZWyGi5/nV9lChoBmgJaA9DCBanWguzMAnAlIaUUpRoFUsyaBZHQMFXvBGx2St1fZQoaAZoCWgPQwgQ5nYv94kEwJSGlFKUaBVLMmgWR0DBV5OdGy5adX2UKGgGaAloD0MIEAUzpmDN+r+UhpRSlGgVSzJoFkdAwVdqFeOXFHV9lChoBmgJaA9DCKiOVUrPNAfAlIaUUpRoFUsyaBZHQMFXQFsYVIt1fZQoaAZoCWgPQwge4EkLl1ULwJSGlFKUaBVLMmgWR0DBWJKgCfYjdX2UKGgGaAloD0MIXRq/8EpS9b+UhpRSlGgVSzJoFkdAwVhqNipeeHV9lChoBmgJaA9DCPNYMzLIvQLAlIaUUpRoFUsyaBZHQMFYQNyHVPN1fZQoaAZoCWgPQwjR5ji3CVcEwJSGlFKUaBVLMmgWR0DBWBcMoc7ydX2UKGgGaAloD0MIbm3heakY9b+UhpRSlGgVSzJoFkdAwVlmNBnjAHV9lChoBmgJaA9DCD7qr1dYsPG/lIaUUpRoFUsyaBZHQMFZPcfvF3p1fZQoaAZoCWgPQwipaoKo+4D9v5SGlFKUaBVLMmgWR0DBWRROpKjBdX2UKGgGaAloD0MIL26jAbxF+b+UhpRSlGgVSzJoFkdAwVjqeo1k2HV9lChoBmgJaA9DCE1oklhSDgXAlIaUUpRoFUsyaBZHQMFaPEGqxTt1fZQoaAZoCWgPQwi++Q0TDRL0v5SGlFKUaBVLMmgWR0DBWhP0Cih4dX2UKGgGaAloD0MIlKMAUTAjC8CUhpRSlGgVSzJoFkdAwVnqjGkvb3V9lChoBmgJaA9DCB0B3CxeDALAlIaUUpRoFUsyaBZHQMFZwKlxffJ1fZQoaAZoCWgPQwgDkxtF1voCwJSGlFKUaBVLMmgWR0DBWyL1dxACdX2UKGgGaAloD0MImbnA5bEm/7+UhpRSlGgVSzJoFkdAwVr6iD/VAnV9lChoBmgJaA9DCOknnN1axgrAlIaUUpRoFUsyaBZHQMFa0Stmthd1fZQoaAZoCWgPQwjY8PRKWUb5v5SGlFKUaBVLMmgWR0DBWqdaUzKtdX2UKGgGaAloD0MI06I+yR32CsCUhpRSlGgVSzJoFkdAwVwG6tDD0nV9lChoBmgJaA9DCCxn74y2KgXAlIaUUpRoFUsyaBZHQMFb3oEr5Ip1fZQoaAZoCWgPQwhYycfuAmX9v5SGlFKUaBVLMmgWR0DBW7UYbbUPdX2UKGgGaAloD0MIUwjkEkeeAsCUhpRSlGgVSzJoFkdAwVuLZDiOvXV9lChoBmgJaA9DCPomTYOiefW/lIaUUpRoFUsyaBZHQMFc7DQqqfh1fZQoaAZoCWgPQwhbKJmc2pn2v5SGlFKUaBVLMmgWR0DBXMOlKsdUdX2UKGgGaAloD0MI0xbX+Ez2+r+UhpRSlGgVSzJoFkdAwVyaN7SiNHV9lChoBmgJaA9DCGWNeohGVwzAlIaUUpRoFUsyaBZHQMFccE3juKJ1fZQoaAZoCWgPQwiQL6GCw8sRwJSGlFKUaBVLMmgWR0DBXbxXCCSSdX2UKGgGaAloD0MIs++K4H+LC8CUhpRSlGgVSzJoFkdAwV2T1aGHpXV9lChoBmgJaA9DCDhKXp1jAA3AlIaUUpRoFUsyaBZHQMFdaidjG1h1fZQoaAZoCWgPQwhaaOc0CzT5v5SGlFKUaBVLMmgWR0DBXUBimVJMdX2UKGgGaAloD0MIC12JQPXP9b+UhpRSlGgVSzJoFkdAwV6b4EfT1HV9lChoBmgJaA9DCGngRzXst/u/lIaUUpRoFUsyaBZHQMFecyOBDoh1fZQoaAZoCWgPQwh39SoyOoAHwJSGlFKUaBVLMmgWR0DBXkmvKU3XdX2UKGgGaAloD0MI51CGqpiKCcCUhpRSlGgVSzJoFkdAwV4fmJWNm3V9lChoBmgJaA9DCEyL+iR3qBDAlIaUUpRoFUsyaBZHQMFffz19ORF1fZQoaAZoCWgPQwjIQQkzbd8AwJSGlFKUaBVLMmgWR0DBX1bdrO7hdX2UKGgGaAloD0MIL4mzImriDcCUhpRSlGgVSzJoFkdAwV8tQGfPHHV9lChoBmgJaA9DCLyvyoXKf/q/lIaUUpRoFUsyaBZHQMFfA420iQl1fZQoaAZoCWgPQwjKiuHqAAgKwJSGlFKUaBVLMmgWR0DBYGcKsuFpdX2UKGgGaAloD0MIVyb8Uj8vCMCUhpRSlGgVSzJoFkdAwWA+b70nPXV9lChoBmgJaA9DCFRx4xbzM/q/lIaUUpRoFUsyaBZHQMFgFL1mJ3x1fZQoaAZoCWgPQwg8hVypZ6EHwJSGlFKUaBVLMmgWR0DBX+qwKSgXdX2UKGgGaAloD0MIm8dhMH9F+L+UhpRSlGgVSzJoFkdAwWFCRSP2f3V9lChoBmgJaA9DCCxGXWvvUwLAlIaUUpRoFUsyaBZHQMFhGePikwh1fZQoaAZoCWgPQwhO0ZFc/gMKwJSGlFKUaBVLMmgWR0DBYPBzvJA/dX2UKGgGaAloD0MIHmyx22fV8r+UhpRSlGgVSzJoFkdAwWDGvmoze3V9lChoBmgJaA9DCFdD4h5LHwDAlIaUUpRoFUsyaBZHQMFiHc3Mpw11fZQoaAZoCWgPQwioHJPF/ccEwJSGlFKUaBVLMmgWR0DBYfWYIBzWdX2UKGgGaAloD0MIu+8YHvuZAcCUhpRSlGgVSzJoFkdAwWHMPhAGCHV9lChoBmgJaA9DCA9CQL6EigTAlIaUUpRoFUsyaBZHQMFhonAymAN1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee0df20760581dd15356c7b3ec8385e5eb0a5d40e101ea329d0691d885b64141
|
3 |
+
size 44670
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0083dc0986952c6104f22844473d373fc0d1d972312208fa842e3db71797b574
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-38-generic-x86_64-with-glibc2.35 # 39~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Mar 17 21:16:15 UTC 2
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 1.11.0+cu102
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.2
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2afef59e10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2afef4f1c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681709398506381890, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFAvaG9tZS92b3ZhLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUC9ob21lL3ZvdmEvLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIpzHPvTALr2u6hk/IpzHPvTALr2u6hk/IpzHPvTALr2u6hk/IpzHPvTALr2u6hk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaejRv94E1T/ziqe8bxirPctnSb6NANa+eESzvy1BQr792kU+V8OrP4znyr9wFnc/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAinMc+9MAuva7qGT/WB1a8fquZu/PfgrwinMc+9MAuva7qGT/WB1a8fquZu/PfgrwinMc+9MAuva7qGT/WB1a8fquZu/PfgrwinMc+9MAuva7qGT/WB1a8fquZu/PfgryUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38986307 -0.04266448 0.6012372 ]\n [ 0.38986307 -0.04266448 0.6012372 ]\n [ 0.38986307 -0.04266448 0.6012372 ]\n [ 0.38986307 -0.04266448 0.6012372 ]]", "desired_goal": "[[-1.6399051 1.664211 -0.020452 ]\n [ 0.0835427 -0.196685 -0.41797295]\n [-1.400527 -0.18970175 0.19321819]\n [ 1.3418988 -1.5851912 0.9651861 ]]", "observation": "[[ 0.38986307 -0.04266448 0.6012372 -0.01306339 -0.00468963 -0.01597593]\n [ 0.38986307 -0.04266448 0.6012372 -0.01306339 -0.00468963 -0.01597593]\n [ 0.38986307 -0.04266448 0.6012372 -0.01306339 -0.00468963 -0.01597593]\n [ 0.38986307 -0.04266448 0.6012372 -0.01306339 -0.00468963 -0.01597593]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiE7pPCQUqzwPTZs8XKYBvMfQCL4Kvmo+ulVdPEGlub06VYg+ettSPQWlA747RL89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02847983 0.02088363 0.01895764]\n [-0.0079132 -0.13360892 0.22924057]\n [ 0.01350921 -0.09064723 0.26627523]\n [ 0.05147884 -0.12855919 0.09339186]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIX+/+eK+6C8CUhpRSlIwBbJRLMowBdJRHQMFNRL/0dzZ1fZQoaAZoCWgPQwgIrvIEwu4CwJSGlFKUaBVLMmgWR0DBTRwlD4QCdX2UKGgGaAloD0MI4bTgRV8BCcCUhpRSlGgVSzJoFkdAwUzyeuFHrnV9lChoBmgJaA9DCMvydRn+0/6/lIaUUpRoFUsyaBZHQMFMyIgFHJ91fZQoaAZoCWgPQwjFyJI5ljf7v5SGlFKUaBVLMmgWR0DBTikMiKR/dX2UKGgGaAloD0MIBi6PNSPD+b+UhpRSlGgVSzJoFkdAwU4Av4dp7HV9lChoBmgJaA9DCEM3+wPlFgPAlIaUUpRoFUsyaBZHQMFN1yh8IAx1fZQoaAZoCWgPQwgRVmMJa+MGwJSGlFKUaBVLMmgWR0DBTa0UoKD1dX2UKGgGaAloD0MIAKyOHOnM/r+UhpRSlGgVSzJoFkdAwU8FIp6QeXV9lChoBmgJaA9DCMB2MGKfoAzAlIaUUpRoFUsyaBZHQMFO3JblijN1fZQoaAZoCWgPQwhxOslWl5MKwJSGlFKUaBVLMmgWR0DBTrLposZpdX2UKGgGaAloD0MIIToEjgTa/7+UhpRSlGgVSzJoFkdAwU6I4lQdj3V9lChoBmgJaA9DCODaiZKQqATAlIaUUpRoFUsyaBZHQMFP3TWGyop1fZQoaAZoCWgPQwjZXDXPEXn9v5SGlFKUaBVLMmgWR0DBT7USPEKmdX2UKGgGaAloD0MIpI6Oq5Fd+r+UhpRSlGgVSzJoFkdAwU+LfP5YYHV9lChoBmgJaA9DCH6P+usV9gXAlIaUUpRoFUsyaBZHQMFPYboKUml1fZQoaAZoCWgPQwhGJXUCmugBwJSGlFKUaBVLMmgWR0DBULc1yeZodX2UKGgGaAloD0MITYHMzqL3D8CUhpRSlGgVSzJoFkdAwVCOttALRnV9lChoBmgJaA9DCL+bbtkhvvu/lIaUUpRoFUsyaBZHQMFQZT987ZF1fZQoaAZoCWgPQwjYZI16iEb1v5SGlFKUaBVLMmgWR0DBUDtVJcxCdX2UKGgGaAloD0MIhllo5zRrBMCUhpRSlGgVSzJoFkdAwVGNRMN+b3V9lChoBmgJaA9DCMbDew4sRwvAlIaUUpRoFUsyaBZHQMFRZMhgVoJ1fZQoaAZoCWgPQwgAdJgvL4ACwJSGlFKUaBVLMmgWR0DBUTsju8brdX2UKGgGaAloD0MI63Qg66nVBsCUhpRSlGgVSzJoFkdAwVERhVlwtXV9lChoBmgJaA9DCJinc0UpQQnAlIaUUpRoFUsyaBZHQMFSdGeDnNh1fZQoaAZoCWgPQwgibeNPVFYEwJSGlFKUaBVLMmgWR0DBUkv4REncdX2UKGgGaAloD0MICwqDMo0m/7+UhpRSlGgVSzJoFkdAwVIiafjCHnV9lChoBmgJaA9DCH8XtmYrDwPAlIaUUpRoFUsyaBZHQMFR+Lsrupl1fZQoaAZoCWgPQwgHQNzVq4gIwJSGlFKUaBVLMmgWR0DBU1A7T2FndX2UKGgGaAloD0MID0WBPpGHA8CUhpRSlGgVSzJoFkdAwVMnj4Hoo3V9lChoBmgJaA9DCAZINIEiVgTAlIaUUpRoFUsyaBZHQMFS/g57w8Z1fZQoaAZoCWgPQwgWhzO/mkMHwJSGlFKUaBVLMmgWR0DBUtQh+vyLdX2UKGgGaAloD0MI81oJ3SUhEsCUhpRSlGgVSzJoFkdAwVQyDf3vhXV9lChoBmgJaA9DCD/EBgsniQrAlIaUUpRoFUsyaBZHQMFUCZN47ih1fZQoaAZoCWgPQwh8KTxodl3/v5SGlFKUaBVLMmgWR0DBU+AUi6g/dX2UKGgGaAloD0MIweWxZmRQ+r+UhpRSlGgVSzJoFkdAwVO2dZJTVHV9lChoBmgJaA9DCGv0aoDSkAnAlIaUUpRoFUsyaBZHQMFVDQT238Z1fZQoaAZoCWgPQwjWcmcmGI7/v5SGlFKUaBVLMmgWR0DBVORtWMjvdX2UKGgGaAloD0MIsTbGTngJ87+UhpRSlGgVSzJoFkdAwVS7Av+OwXV9lChoBmgJaA9DCGKiQQqeAvW/lIaUUpRoFUsyaBZHQMFUkTLW7OF1fZQoaAZoCWgPQwhVhJuMKsMAwJSGlFKUaBVLMmgWR0DBVfAysS00dX2UKGgGaAloD0MIUgq6vaQx/L+UhpRSlGgVSzJoFkdAwVXHvAoG6nV9lChoBmgJaA9DCGajc36KgwXAlIaUUpRoFUsyaBZHQMFVnjk+5e91fZQoaAZoCWgPQwg02NR5VLwIwJSGlFKUaBVLMmgWR0DBVXSBiCrcdX2UKGgGaAloD0MIQdXo1QAl9r+UhpRSlGgVSzJoFkdAwVbSqH4463V9lChoBmgJaA9DCB+6oL5lbgnAlIaUUpRoFUsyaBZHQMFWqhjvuw51fZQoaAZoCWgPQwgxzXSvk1oLwJSGlFKUaBVLMmgWR0DBVoCFh5PedX2UKGgGaAloD0MI4zjwarkz/b+UhpRSlGgVSzJoFkdAwVZWyGi5/nV9lChoBmgJaA9DCBanWguzMAnAlIaUUpRoFUsyaBZHQMFXvBGx2St1fZQoaAZoCWgPQwgQ5nYv94kEwJSGlFKUaBVLMmgWR0DBV5OdGy5adX2UKGgGaAloD0MIEAUzpmDN+r+UhpRSlGgVSzJoFkdAwVdqFeOXFHV9lChoBmgJaA9DCKiOVUrPNAfAlIaUUpRoFUsyaBZHQMFXQFsYVIt1fZQoaAZoCWgPQwge4EkLl1ULwJSGlFKUaBVLMmgWR0DBWJKgCfYjdX2UKGgGaAloD0MIXRq/8EpS9b+UhpRSlGgVSzJoFkdAwVhqNipeeHV9lChoBmgJaA9DCPNYMzLIvQLAlIaUUpRoFUsyaBZHQMFYQNyHVPN1fZQoaAZoCWgPQwjR5ji3CVcEwJSGlFKUaBVLMmgWR0DBWBcMoc7ydX2UKGgGaAloD0MIbm3heakY9b+UhpRSlGgVSzJoFkdAwVlmNBnjAHV9lChoBmgJaA9DCD7qr1dYsPG/lIaUUpRoFUsyaBZHQMFZPcfvF3p1fZQoaAZoCWgPQwipaoKo+4D9v5SGlFKUaBVLMmgWR0DBWRROpKjBdX2UKGgGaAloD0MIL26jAbxF+b+UhpRSlGgVSzJoFkdAwVjqeo1k2HV9lChoBmgJaA9DCE1oklhSDgXAlIaUUpRoFUsyaBZHQMFaPEGqxTt1fZQoaAZoCWgPQwi++Q0TDRL0v5SGlFKUaBVLMmgWR0DBWhP0Cih4dX2UKGgGaAloD0MIlKMAUTAjC8CUhpRSlGgVSzJoFkdAwVnqjGkvb3V9lChoBmgJaA9DCB0B3CxeDALAlIaUUpRoFUsyaBZHQMFZwKlxffJ1fZQoaAZoCWgPQwgDkxtF1voCwJSGlFKUaBVLMmgWR0DBWyL1dxACdX2UKGgGaAloD0MImbnA5bEm/7+UhpRSlGgVSzJoFkdAwVr6iD/VAnV9lChoBmgJaA9DCOknnN1axgrAlIaUUpRoFUsyaBZHQMFa0Stmthd1fZQoaAZoCWgPQwjY8PRKWUb5v5SGlFKUaBVLMmgWR0DBWqdaUzKtdX2UKGgGaAloD0MI06I+yR32CsCUhpRSlGgVSzJoFkdAwVwG6tDD0nV9lChoBmgJaA9DCCxn74y2KgXAlIaUUpRoFUsyaBZHQMFb3oEr5Ip1fZQoaAZoCWgPQwhYycfuAmX9v5SGlFKUaBVLMmgWR0DBW7UYbbUPdX2UKGgGaAloD0MIUwjkEkeeAsCUhpRSlGgVSzJoFkdAwVuLZDiOvXV9lChoBmgJaA9DCPomTYOiefW/lIaUUpRoFUsyaBZHQMFc7DQqqfh1fZQoaAZoCWgPQwhbKJmc2pn2v5SGlFKUaBVLMmgWR0DBXMOlKsdUdX2UKGgGaAloD0MI0xbX+Ez2+r+UhpRSlGgVSzJoFkdAwVyaN7SiNHV9lChoBmgJaA9DCGWNeohGVwzAlIaUUpRoFUsyaBZHQMFccE3juKJ1fZQoaAZoCWgPQwiQL6GCw8sRwJSGlFKUaBVLMmgWR0DBXbxXCCSSdX2UKGgGaAloD0MIs++K4H+LC8CUhpRSlGgVSzJoFkdAwV2T1aGHpXV9lChoBmgJaA9DCDhKXp1jAA3AlIaUUpRoFUsyaBZHQMFdaidjG1h1fZQoaAZoCWgPQwhaaOc0CzT5v5SGlFKUaBVLMmgWR0DBXUBimVJMdX2UKGgGaAloD0MIC12JQPXP9b+UhpRSlGgVSzJoFkdAwV6b4EfT1HV9lChoBmgJaA9DCGngRzXst/u/lIaUUpRoFUsyaBZHQMFecyOBDoh1fZQoaAZoCWgPQwh39SoyOoAHwJSGlFKUaBVLMmgWR0DBXkmvKU3XdX2UKGgGaAloD0MI51CGqpiKCcCUhpRSlGgVSzJoFkdAwV4fmJWNm3V9lChoBmgJaA9DCEyL+iR3qBDAlIaUUpRoFUsyaBZHQMFffz19ORF1fZQoaAZoCWgPQwjIQQkzbd8AwJSGlFKUaBVLMmgWR0DBX1bdrO7hdX2UKGgGaAloD0MIL4mzImriDcCUhpRSlGgVSzJoFkdAwV8tQGfPHHV9lChoBmgJaA9DCLyvyoXKf/q/lIaUUpRoFUsyaBZHQMFfA420iQl1fZQoaAZoCWgPQwjKiuHqAAgKwJSGlFKUaBVLMmgWR0DBYGcKsuFpdX2UKGgGaAloD0MIVyb8Uj8vCMCUhpRSlGgVSzJoFkdAwWA+b70nPXV9lChoBmgJaA9DCFRx4xbzM/q/lIaUUpRoFUsyaBZHQMFgFL1mJ3x1fZQoaAZoCWgPQwg8hVypZ6EHwJSGlFKUaBVLMmgWR0DBX+qwKSgXdX2UKGgGaAloD0MIm8dhMH9F+L+UhpRSlGgVSzJoFkdAwWFCRSP2f3V9lChoBmgJaA9DCCxGXWvvUwLAlIaUUpRoFUsyaBZHQMFhGePikwh1fZQoaAZoCWgPQwhO0ZFc/gMKwJSGlFKUaBVLMmgWR0DBYPBzvJA/dX2UKGgGaAloD0MIHmyx22fV8r+UhpRSlGgVSzJoFkdAwWDGvmoze3V9lChoBmgJaA9DCFdD4h5LHwDAlIaUUpRoFUsyaBZHQMFiHc3Mpw11fZQoaAZoCWgPQwioHJPF/ccEwJSGlFKUaBVLMmgWR0DBYfWYIBzWdX2UKGgGaAloD0MIu+8YHvuZAcCUhpRSlGgVSzJoFkdAwWHMPhAGCHV9lChoBmgJaA9DCA9CQL6EigTAlIaUUpRoFUsyaBZHQMFhonAymAN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.19.0-38-generic-x86_64-with-glibc2.35 # 39~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Mar 17 21:16:15 UTC 2", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (671 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.553319105831906, "std_reward": 0.8552380636896724, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-17T18:27:48.451751"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58a0943ffa792acb7e1f8999b47a7349f1b539dc1ec9ae12ab5dd17719fea88c
|
3 |
+
size 2387
|