--- pipeline_tag: translation language: - en - de - el - es - nl - it --- The model and the tokenizer are based on [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M). We trained the model to use one sentence of context. The context is prepended to the input sentence with the `sep_token` in between. We used a subset of the [OpenSubtitles2018]( https://huggingface.co/datasets/open_subtitles) dataset for training. We trained on the interleaved dataset for all directions between the following languages: English, German, Dutch, Spanish, Italian, and Greek. The tokenizer of the base model was not changed. For the language codes, see the base model. Use this code for translation: ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM model_name = 'voxreality/src_ctx_aware_nllb_600M' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) max_length = 100 src_lang = 'eng_Latn' tgt_lang = 'deu_Latn' context_text = 'This is an optional context sentence.' # use '' empty string if not context should be used sentence_text = 'Text to be translated.' input_text = f'{context_text} {tokenizer.sep_token} {sentence_text}' tokenizer.src_lang = src_lang inputs = tokenizer(input_text, return_tensors='pt').to(model.device) model_output = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], max_length=max_length) output_text = tokenizer.batch_decode(model_output, skip_special_tokens=True)[0] print(output_text) ``` You can also use the pipeline ``` from transformers import pipeline model_name = 'voxreality/src_ctx_aware_nllb_600M' translation_pipeline = pipeline("translation", model=model_name) src_lang = 'eng_Latn' tgt_lang = 'deu_Latn' context_text = 'This is an optional context sentence.' # use '' empty string if not context should be used sentence_text = 'Text to be translated.' input_texts = [f'{context_text} {translation_pipeline.tokenizer.sep_token} {sentence_text}'] pipeline_output = translation_pipeline(input_texts, src_lang=src_lang, tgt_lang=tgt_lang) print(pipeline_output[0]['translation_text']) ```