Lunar lander trained for DeepRL course
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 237.79 +/- 75.24
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e122f620940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e122f6209d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e122f620a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e122f620af0>", "_build": "<function ActorCriticPolicy._build at 0x7e122f620b80>", "forward": "<function ActorCriticPolicy.forward at 0x7e122f620c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e122f620ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e122f620d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7e122f620dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e122f620e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e122f620ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e122f620f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e122f61c940>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690895367389404040, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb29rx7MIi6AaKBOgNHkDUEYOq6uIeWuQAAgD8AAIA/M8SOvVWpgD/UygC+tja3vnIrgb0HJpe9AAAAAAAAAAAmBxW+YcL3O52uuzpqftm4VieCvTRWITkAAIA/AACAP/MLzL3D2TS6pB/DONfwiDMeur26CGPitwAAgD8AAAAAOnUVPvRAhz+R3Ks+6VPbvnKdOj74egw+AAAAAAAAAABaAD8+/nLRPmJWD76ocYC+G7V4PYPY6r0AAAAAAAAAALPKsj0UyI26wnxcueJEFTYWSpu56Ht2OAAAgD8AAIA/AOnTPebHlD+UH5o+TfXIvlfEvz2Rx0o9AAAAAAAAAACam/u9k/ghPzq5pjzWNGS+LvDSvegn0bwAAAAAAAAAADMLKTzSTKU+5oZGvF7DiL7lbhM9dK2APAAAAAAAAAAAM4IHPey56rnikZy6flaTNY/oRbvu5rQ5AACAPwAAgD9m5+M8K60DP4pGo7wDiYa+SUoDvJbAqzoAAAAAAAAAABoRCD4xZu4+qiW7vZIQa77FHZg9A2skvgAAAAAAAAAAAEiIO65VhboyBqc6wNqTNcncirqqssK5AACAPwAAgD8AwEq8XIMEuiZPkzOr30wvIwr3uWqzn7MAAIA/AACAPwA4VT6hFRE/PVCyvQ0aZb4uX5Q96K9+vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6y95IH1OGMAWyUTfQCjAF0lEdAlw+DJQtSRHV9lChoBkdAZNrUz9CNTGgHTegDaAhHQJcU8P5HmRx1fZQoaAZHQGSNaUqx1PpoB03oA2gIR0CXFb+M6zVudX2UKGgGR0BicFDtw71aaAdN6ANoCEdAlxoKnBLwnnV9lChoBkdAYRITJyQxOGgHTegDaAhHQJcabq7iADt1fZQoaAZHQGZhUVrRBu5oB03oA2gIR0CXIBLhrFfidX2UKGgGR0BkjTIeYD1XaAdN6ANoCEdAly7fLxI8Q3V9lChoBkdAZr59+gDifmgHTegDaAhHQJcwXx0+1Sh1fZQoaAZHQGMT0g8r7O5oB03oA2gIR0CXMrk/8l5XdX2UKGgGR0Bn6MiMYMvzaAdN6ANoCEdAl0VapgkTpXV9lChoBkdAZT3i704BFWgHTegDaAhHQJdHhHNHH3l1fZQoaAZHQGRXF8gIQe5oB03oA2gIR0CXSE9aEBbOdX2UKGgGR0BhxWmHgxagaAdN6ANoCEdAl0uAJ5VwP3V9lChoBkdAP13PiT+vQmgHS+RoCEdAl1Fkb5uZTnV9lChoBkdAZ5r433pOe2gHTegDaAhHQJdU1szl90B1fZQoaAZHQGPIYrSVnmJoB03oA2gIR0CXWHWCEpRXdX2UKGgGR0BjTlzltCRfaAdN6ANoCEdAl117laKUFHV9lChoBkdAZdJ212JSBWgHTegDaAhHQJdfU9ECvHN1fZQoaAZHQGCYQsPJ7sxoB03oA2gIR0CXZT/GEPDpdX2UKGgGR0Bhm8UfxMFmaAdN6ANoCEdAl2X6s2eg+XV9lChoBkdAY0ORf4REnmgHTegDaAhHQJdqLaJyhi91fZQoaAZHQGFbnRLK3d9oB03oA2gIR0CXarfnwG4adX2UKGgGRz/x89GI9C/oaAdL5mgIR0CXbXAPd2xIdX2UKGgGR0BjQc4ecQRPaAdN6ANoCEdAl3BhJAdGRXV9lChoBkdAUR0olUp/gGgHS+1oCEdAl3dm+K0laHV9lChoBkdAYodYtg8bJmgHTegDaAhHQJd68tOEdvN1fZQoaAZHQGQMFj/dZaFoB03oA2gIR0CXfA4PPLPldX2UKGgGR0BklwRTS9dvaAdN6ANoCEdAl33qxoqTbHV9lChoBkdAYwhYoy9EkWgHTegDaAhHQJeU7XarWAh1fZQoaAZHQGCMfMwDeTFoB03oA2gIR0CXlgMGX5WSdX2UKGgGR0Bhu5gPVd5ZaAdN6ANoCEdAl5l29L6DXnV9lChoBkdAYRiQDFId2mgHTegDaAhHQJef4CfYjB51fZQoaAZHQGM1i9RJmNBoB03oA2gIR0CXo4PT5O8DdX2UKGgGR0BkZeZRbbDeaAdN6ANoCEdAl6b6kuYhMnV9lChoBkdAZeGMBp5/smgHTegDaAhHQJeqt6w+t8x1fZQoaAZHQGQ6NwaR6nloB03oA2gIR0CXsW3c580DdX2UKGgGR0BkSGwmmce9aAdN6ANoCEdAl7I6sdT5wnV9lChoBkdAYzgI42jwhGgHTegDaAhHQJe3X4AS39d1fZQoaAZHQGRva2WpqAVoB03oA2gIR0CXuqZBsyi3dX2UKGgGR0BinIuwosqbaAdN6ANoCEdAl74MhTwUg3V9lChoBkdAcAxwI+nqFGgHTUADaAhHQJe/rBxgiNd1fZQoaAZHQGTtUZeiSJVoB03oA2gIR0CXyN5Qgs9TdX2UKGgGR0BnMDvoePq+aAdN6ANoCEdAl841ruYx+XV9lChoBkdAcD7kiUxEfGgHTVoBaAhHQJfQSDSPU8V1fZQoaAZHQGO9637UG3ZoB03oA2gIR0CX0FgJ1JUYdX2UKGgGR0BcngHE/B3zaAdN6ANoCEdAl+UavFFUhnV9lChoBkdAYXuYVqN6xGgHTegDaAhHQJfl98stkFx1fZQoaAZHQGUy9xZMcp9oB03oA2gIR0CX6V8nuy/sdX2UKGgGR0Bj/oWznieeaAdN6ANoCEdAl+8at1ZDA3V9lChoBkdAaC4OYplSTGgHTegDaAhHQJfycysS00F1fZQoaAZHQGL4aUzKs+5oB03oA2gIR0CX9wfKISDidX2UKGgGR0BolBtBOYY0aAdN6ANoCEdAl/uFbaAWi3V9lChoBkdAZib863iJf2gHTegDaAhHQJgCLRzBAOd1fZQoaAZHQGUK4wAU+LZoB03oA2gIR0CYAvupS75EdX2UKGgGR0BlJ8dq+JxeaAdN6ANoCEdAmArcNhE0BXV9lChoBkdAZ38T+vQnhWgHTegDaAhHQJgOBlNDc/N1fZQoaAZHQGXIXta6jFhoB03oA2gIR0CYD1YG+sYEdX2UKGgGR0BmNaRuCPIXaAdN6ANoCEdAmBWJYDDCQHV9lChoBkdAZb2SU1Q662gHTegDaAhHQJgaevpyIYZ1fZQoaAZHQGIKyYoiLVFoB03oA2gIR0CYHJNutOmBdX2UKGgGR0BhdSn752yLaAdN6ANoCEdAmByj6nBLwnV9lChoBkdAXo1+mWMS9WgHTegDaAhHQJgzs7hegL91fZQoaAZHQGKq/ChvitJoB03oA2gIR0CYNIO/cnE3dX2UKGgGR0Bjae7xusLfaAdN6ANoCEdAmDf0ZFXq7nV9lChoBkdAYRymhM8HOmgHTegDaAhHQJg+H0Dlo111fZQoaAZHQGWYWLYPGyZoB03oA2gIR0CYQW6AvtdBdX2UKGgGR0BwJ7epGWleaAdNnQJoCEdAmEOdBWxQi3V9lChoBkdAY5NRmbsniWgHTegDaAhHQJhEgl8gIQh1fZQoaAZHQGU6WgWac7RoB03oA2gIR0CYR4+o99tudX2UKGgGR0BiJC7PIGQkaAdN6ANoCEdAmE1a1LJ0XHV9lChoBkdAZdmarFOwgWgHTegDaAhHQJhOCi7Ciyp1fZQoaAZHQF99phnanJloB03oA2gIR0CYWJd92HLzdX2UKGgGR0BhJ+YQarFPaAdN6ANoCEdAmFpWYWtU43V9lChoBkdAYfzx3FDOT2gHTegDaAhHQJhjwgTyrgh1fZQoaAZHQGOANPxhDw9oB03oA2gIR0CYaMHSWqtHdX2UKGgGR0BmNIS13MY/aAdN6ANoCEdAmGrOyZ8a43V9lChoBkdAX29eTmnwX2gHTegDaAhHQJhq307KaG51fZQoaAZHQHEMFuejEehoB02ZA2gIR0CYaxt29tdidX2UKGgGR0BnrFUS7GvPaAdN6ANoCEdAmG/ZccENfHV9lChoBkdAY9kbSZ0CBGgHTegDaAhHQJiDnf1pTMt1fZQoaAZHQGJZo3Jgb6xoB03oA2gIR0CYic51eSjhdX2UKGgGR0BfWGsRxtHhaAdN6ANoCEdAmI3e/tY0VXV9lChoBkdAbpLAwfyPMmgHTUQCaAhHQJiPykqMFU11fZQoaAZHQGV9jRD1GspoB03oA2gIR0CYkP7wazeGdX2UKGgGR0BiJJEMLF4taAdN6ANoCEdAmJJC/sVtXXV9lChoBkdAZa3lnRLK3mgHTegDaAhHQJiW0tapxWF1fZQoaAZHQGLDIqLCN0hoB03oA2gIR0CYnT9F4LThdX2UKGgGR0BlceIEbHZLaAdN6ANoCEdAmJ38SwnpjnV9lChoBkdAYpkWPcSGrWgHTegDaAhHQJiphpsXSBt1fZQoaAZHQHBQ+zQeFL5oB03pAWgIR0CYqf0NSZSfdX2UKGgGR0BkqXAIppevaAdN6ANoCEdAmLIBASnLq3V9lChoBkdAZZ970nPVu2gHTegDaAhHQJi3U3S8an91fZQoaAZHQD6nxPO6d2BoB0vdaAhHQJi3+e4Cp3p1fZQoaAZHQGeKgBLf1pVoB03oA2gIR0CYuVUI9kjHdX2UKGgGR0BjnOGdqcmTaAdN6ANoCEdAmLlkmY0EYHV9lChoBkdAYD/aUzKs+2gHTegDaAhHQJi5mQp4KQd1fZQoaAZHQHCFdz8xbjdoB02JAmgIR0CYumPQfIS2dX2UKGgGR0BxICpXIU8FaAdN6QJoCEdAmLzkB4lhPXV9lChoBkdAQ361Cw8nu2gHS9RoCEdAmL2ng1m8NHV9lChoBkdAYKONedCmdmgHTegDaAhHQJi9xpmEoOR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:456b1384b55c4b5afbfec2a57b3b473bedd9ed8274beec34ceff0693ae0387d7
|
3 |
+
size 146749
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e122f620940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e122f6209d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e122f620a60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e122f620af0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e122f620b80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e122f620c10>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e122f620ca0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e122f620d30>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e122f620dc0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e122f620e50>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e122f620ee0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e122f620f70>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e122f61c940>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1690895367389404040,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGb29rx7MIi6AaKBOgNHkDUEYOq6uIeWuQAAgD8AAIA/M8SOvVWpgD/UygC+tja3vnIrgb0HJpe9AAAAAAAAAAAmBxW+YcL3O52uuzpqftm4VieCvTRWITkAAIA/AACAP/MLzL3D2TS6pB/DONfwiDMeur26CGPitwAAgD8AAAAAOnUVPvRAhz+R3Ks+6VPbvnKdOj74egw+AAAAAAAAAABaAD8+/nLRPmJWD76ocYC+G7V4PYPY6r0AAAAAAAAAALPKsj0UyI26wnxcueJEFTYWSpu56Ht2OAAAgD8AAIA/AOnTPebHlD+UH5o+TfXIvlfEvz2Rx0o9AAAAAAAAAACam/u9k/ghPzq5pjzWNGS+LvDSvegn0bwAAAAAAAAAADMLKTzSTKU+5oZGvF7DiL7lbhM9dK2APAAAAAAAAAAAM4IHPey56rnikZy6flaTNY/oRbvu5rQ5AACAPwAAgD9m5+M8K60DP4pGo7wDiYa+SUoDvJbAqzoAAAAAAAAAABoRCD4xZu4+qiW7vZIQa77FHZg9A2skvgAAAAAAAAAAAEiIO65VhboyBqc6wNqTNcncirqqssK5AACAPwAAgD8AwEq8XIMEuiZPkzOr30wvIwr3uWqzn7MAAIA/AACAPwA4VT6hFRE/PVCyvQ0aZb4uX5Q96K9+vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6y95IH1OGMAWyUTfQCjAF0lEdAlw+DJQtSRHV9lChoBkdAZNrUz9CNTGgHTegDaAhHQJcU8P5HmRx1fZQoaAZHQGSNaUqx1PpoB03oA2gIR0CXFb+M6zVudX2UKGgGR0BicFDtw71aaAdN6ANoCEdAlxoKnBLwnnV9lChoBkdAYRITJyQxOGgHTegDaAhHQJcabq7iADt1fZQoaAZHQGZhUVrRBu5oB03oA2gIR0CXIBLhrFfidX2UKGgGR0BkjTIeYD1XaAdN6ANoCEdAly7fLxI8Q3V9lChoBkdAZr59+gDifmgHTegDaAhHQJcwXx0+1Sh1fZQoaAZHQGMT0g8r7O5oB03oA2gIR0CXMrk/8l5XdX2UKGgGR0Bn6MiMYMvzaAdN6ANoCEdAl0VapgkTpXV9lChoBkdAZT3i704BFWgHTegDaAhHQJdHhHNHH3l1fZQoaAZHQGRXF8gIQe5oB03oA2gIR0CXSE9aEBbOdX2UKGgGR0BhxWmHgxagaAdN6ANoCEdAl0uAJ5VwP3V9lChoBkdAP13PiT+vQmgHS+RoCEdAl1Fkb5uZTnV9lChoBkdAZ5r433pOe2gHTegDaAhHQJdU1szl90B1fZQoaAZHQGPIYrSVnmJoB03oA2gIR0CXWHWCEpRXdX2UKGgGR0BjTlzltCRfaAdN6ANoCEdAl117laKUFHV9lChoBkdAZdJ212JSBWgHTegDaAhHQJdfU9ECvHN1fZQoaAZHQGCYQsPJ7sxoB03oA2gIR0CXZT/GEPDpdX2UKGgGR0Bhm8UfxMFmaAdN6ANoCEdAl2X6s2eg+XV9lChoBkdAY0ORf4REnmgHTegDaAhHQJdqLaJyhi91fZQoaAZHQGFbnRLK3d9oB03oA2gIR0CXarfnwG4adX2UKGgGRz/x89GI9C/oaAdL5mgIR0CXbXAPd2xIdX2UKGgGR0BjQc4ecQRPaAdN6ANoCEdAl3BhJAdGRXV9lChoBkdAUR0olUp/gGgHS+1oCEdAl3dm+K0laHV9lChoBkdAYodYtg8bJmgHTegDaAhHQJd68tOEdvN1fZQoaAZHQGQMFj/dZaFoB03oA2gIR0CXfA4PPLPldX2UKGgGR0BklwRTS9dvaAdN6ANoCEdAl33qxoqTbHV9lChoBkdAYwhYoy9EkWgHTegDaAhHQJeU7XarWAh1fZQoaAZHQGCMfMwDeTFoB03oA2gIR0CXlgMGX5WSdX2UKGgGR0Bhu5gPVd5ZaAdN6ANoCEdAl5l29L6DXnV9lChoBkdAYRiQDFId2mgHTegDaAhHQJef4CfYjB51fZQoaAZHQGM1i9RJmNBoB03oA2gIR0CXo4PT5O8DdX2UKGgGR0BkZeZRbbDeaAdN6ANoCEdAl6b6kuYhMnV9lChoBkdAZeGMBp5/smgHTegDaAhHQJeqt6w+t8x1fZQoaAZHQGQ6NwaR6nloB03oA2gIR0CXsW3c580DdX2UKGgGR0BkSGwmmce9aAdN6ANoCEdAl7I6sdT5wnV9lChoBkdAYzgI42jwhGgHTegDaAhHQJe3X4AS39d1fZQoaAZHQGRva2WpqAVoB03oA2gIR0CXuqZBsyi3dX2UKGgGR0BinIuwosqbaAdN6ANoCEdAl74MhTwUg3V9lChoBkdAcAxwI+nqFGgHTUADaAhHQJe/rBxgiNd1fZQoaAZHQGTtUZeiSJVoB03oA2gIR0CXyN5Qgs9TdX2UKGgGR0BnMDvoePq+aAdN6ANoCEdAl841ruYx+XV9lChoBkdAcD7kiUxEfGgHTVoBaAhHQJfQSDSPU8V1fZQoaAZHQGO9637UG3ZoB03oA2gIR0CX0FgJ1JUYdX2UKGgGR0BcngHE/B3zaAdN6ANoCEdAl+UavFFUhnV9lChoBkdAYXuYVqN6xGgHTegDaAhHQJfl98stkFx1fZQoaAZHQGUy9xZMcp9oB03oA2gIR0CX6V8nuy/sdX2UKGgGR0Bj/oWznieeaAdN6ANoCEdAl+8at1ZDA3V9lChoBkdAaC4OYplSTGgHTegDaAhHQJfycysS00F1fZQoaAZHQGL4aUzKs+5oB03oA2gIR0CX9wfKISDidX2UKGgGR0BolBtBOYY0aAdN6ANoCEdAl/uFbaAWi3V9lChoBkdAZib863iJf2gHTegDaAhHQJgCLRzBAOd1fZQoaAZHQGUK4wAU+LZoB03oA2gIR0CYAvupS75EdX2UKGgGR0BlJ8dq+JxeaAdN6ANoCEdAmArcNhE0BXV9lChoBkdAZ38T+vQnhWgHTegDaAhHQJgOBlNDc/N1fZQoaAZHQGXIXta6jFhoB03oA2gIR0CYD1YG+sYEdX2UKGgGR0BmNaRuCPIXaAdN6ANoCEdAmBWJYDDCQHV9lChoBkdAZb2SU1Q662gHTegDaAhHQJgaevpyIYZ1fZQoaAZHQGIKyYoiLVFoB03oA2gIR0CYHJNutOmBdX2UKGgGR0BhdSn752yLaAdN6ANoCEdAmByj6nBLwnV9lChoBkdAXo1+mWMS9WgHTegDaAhHQJgzs7hegL91fZQoaAZHQGKq/ChvitJoB03oA2gIR0CYNIO/cnE3dX2UKGgGR0Bjae7xusLfaAdN6ANoCEdAmDf0ZFXq7nV9lChoBkdAYRymhM8HOmgHTegDaAhHQJg+H0Dlo111fZQoaAZHQGWYWLYPGyZoB03oA2gIR0CYQW6AvtdBdX2UKGgGR0BwJ7epGWleaAdNnQJoCEdAmEOdBWxQi3V9lChoBkdAY5NRmbsniWgHTegDaAhHQJhEgl8gIQh1fZQoaAZHQGU6WgWac7RoB03oA2gIR0CYR4+o99tudX2UKGgGR0BiJC7PIGQkaAdN6ANoCEdAmE1a1LJ0XHV9lChoBkdAZdmarFOwgWgHTegDaAhHQJhOCi7Ciyp1fZQoaAZHQF99phnanJloB03oA2gIR0CYWJd92HLzdX2UKGgGR0BhJ+YQarFPaAdN6ANoCEdAmFpWYWtU43V9lChoBkdAYfzx3FDOT2gHTegDaAhHQJhjwgTyrgh1fZQoaAZHQGOANPxhDw9oB03oA2gIR0CYaMHSWqtHdX2UKGgGR0BmNIS13MY/aAdN6ANoCEdAmGrOyZ8a43V9lChoBkdAX29eTmnwX2gHTegDaAhHQJhq307KaG51fZQoaAZHQHEMFuejEehoB02ZA2gIR0CYaxt29tdidX2UKGgGR0BnrFUS7GvPaAdN6ANoCEdAmG/ZccENfHV9lChoBkdAY9kbSZ0CBGgHTegDaAhHQJiDnf1pTMt1fZQoaAZHQGJZo3Jgb6xoB03oA2gIR0CYic51eSjhdX2UKGgGR0BfWGsRxtHhaAdN6ANoCEdAmI3e/tY0VXV9lChoBkdAbpLAwfyPMmgHTUQCaAhHQJiPykqMFU11fZQoaAZHQGV9jRD1GspoB03oA2gIR0CYkP7wazeGdX2UKGgGR0BiJJEMLF4taAdN6ANoCEdAmJJC/sVtXXV9lChoBkdAZa3lnRLK3mgHTegDaAhHQJiW0tapxWF1fZQoaAZHQGLDIqLCN0hoB03oA2gIR0CYnT9F4LThdX2UKGgGR0BlceIEbHZLaAdN6ANoCEdAmJ38SwnpjnV9lChoBkdAYpkWPcSGrWgHTegDaAhHQJiphpsXSBt1fZQoaAZHQHBQ+zQeFL5oB03pAWgIR0CYqf0NSZSfdX2UKGgGR0BkqXAIppevaAdN6ANoCEdAmLIBASnLq3V9lChoBkdAZZ970nPVu2gHTegDaAhHQJi3U3S8an91fZQoaAZHQD6nxPO6d2BoB0vdaAhHQJi3+e4Cp3p1fZQoaAZHQGeKgBLf1pVoB03oA2gIR0CYuVUI9kjHdX2UKGgGR0BjnOGdqcmTaAdN6ANoCEdAmLlkmY0EYHV9lChoBkdAYD/aUzKs+2gHTegDaAhHQJi5mQp4KQd1fZQoaAZHQHCFdz8xbjdoB02JAmgIR0CYumPQfIS2dX2UKGgGR0BxICpXIU8FaAdN6QJoCEdAmLzkB4lhPXV9lChoBkdAQ361Cw8nu2gHS9RoCEdAmL2ng1m8NHV9lChoBkdAYKONedCmdmgHTegDaAhHQJi9xpmEoOR1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ff4519ab64f91243f053c6361f506517db95cefdebccf394a42411a00d4ab16
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:291b3c6387a6220b69118cffe30b9158160bc91b75deada37eb8c90810de8d9d
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (156 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 237.79064950000003, "std_reward": 75.23844244319275, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-01T13:35:02.612250"}
|