Upload neural circuit diagrams.ipynb
Browse files- neural circuit diagrams.ipynb +898 -0
neural circuit diagrams.ipynb
ADDED
@@ -0,0 +1,898 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 19,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import torch\n",
|
10 |
+
"import typing\n",
|
11 |
+
"import functorch\n",
|
12 |
+
"import itertools"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "markdown",
|
17 |
+
"metadata": {},
|
18 |
+
"source": [
|
19 |
+
"# 2.3 Tensors\n",
|
20 |
+
"### We diagrams tensors, which can be vertically and horizontally decomposed.\n",
|
21 |
+
"<img src=\"SVG/rediagram.svg\" width=\"700\">"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": 20,
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [
|
29 |
+
{
|
30 |
+
"data": {
|
31 |
+
"text/plain": [
|
32 |
+
"tensor([[0.6837, 0.6853]])"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
"execution_count": 20,
|
36 |
+
"metadata": {},
|
37 |
+
"output_type": "execute_result"
|
38 |
+
}
|
39 |
+
],
|
40 |
+
"source": [
|
41 |
+
"# This diagram shows a function h : 3, 4 2, 6 -> 1 2 constructed out of f: 4 2, 6 -> 3 3 and g: 3, 3 3 -> 1 2\n",
|
42 |
+
"# We use assertions and random outputs to represent generic functions, and how diagrams relate to code.\n",
|
43 |
+
"T = torch.Tensor\n",
|
44 |
+
"def f(x0 : T, x1 : T):\n",
|
45 |
+
" \"\"\" f: 4 2, 6 -> 3 3 \"\"\"\n",
|
46 |
+
" assert x0.size() == torch.Size([4,2])\n",
|
47 |
+
" assert x1.size() == torch.Size([6])\n",
|
48 |
+
" return torch.rand([3,3])\n",
|
49 |
+
"def g(x0 : T, x1: T):\n",
|
50 |
+
" \"\"\" g: 3, 3 3 -> 1 2 \"\"\"\n",
|
51 |
+
" assert x0.size() == torch.Size([3])\n",
|
52 |
+
" assert x1.size() == torch.Size([3, 3])\n",
|
53 |
+
" return torch.rand([1,2])\n",
|
54 |
+
"def h(x0 : T, x1 : T, x2 : T):\n",
|
55 |
+
" \"\"\" h: 3, 4 2, 6 -> 1 2\"\"\"\n",
|
56 |
+
" assert x0.size() == torch.Size([3])\n",
|
57 |
+
" assert x1.size() == torch.Size([4, 2])\n",
|
58 |
+
" assert x2.size() == torch.Size([6])\n",
|
59 |
+
" return g(x0, f(x1,x2))\n",
|
60 |
+
"\n",
|
61 |
+
"h(torch.rand([3]), torch.rand([4, 2]), torch.rand([6]))"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"cell_type": "markdown",
|
66 |
+
"metadata": {},
|
67 |
+
"source": [
|
68 |
+
"## 2.3.1 Indexes\n",
|
69 |
+
"### Figure 8: Indexes\n",
|
70 |
+
"<img src=\"SVG/indexes.svg\" width=\"700\">"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"execution_count": 21,
|
76 |
+
"metadata": {},
|
77 |
+
"outputs": [
|
78 |
+
{
|
79 |
+
"data": {
|
80 |
+
"text/plain": [
|
81 |
+
"tensor([6, 7, 8])"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
"execution_count": 21,
|
85 |
+
"metadata": {},
|
86 |
+
"output_type": "execute_result"
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"source": [
|
90 |
+
"# Extracting a subtensor is a process we are familiar with. Consider,\n",
|
91 |
+
"# A (4 3) tensor\n",
|
92 |
+
"table = torch.arange(0,12).view(4,3)\n",
|
93 |
+
"row = table[2,:]\n",
|
94 |
+
"row"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "markdown",
|
99 |
+
"metadata": {},
|
100 |
+
"source": [
|
101 |
+
"### Figure 9: Subtensors\n",
|
102 |
+
"<img src=\"SVG/subtensors.svg\" width=\"700\">"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "code",
|
107 |
+
"execution_count": 22,
|
108 |
+
"metadata": {},
|
109 |
+
"outputs": [],
|
110 |
+
"source": [
|
111 |
+
"# Different orders of access give the same result.\n",
|
112 |
+
"# Set up a random (5 7) tensor\n",
|
113 |
+
"a, b = 5, 7\n",
|
114 |
+
"Xab = torch.rand([a] + [b])\n",
|
115 |
+
"# Show that all pairs of indexes give the same result\n",
|
116 |
+
"for ia, jb in itertools.product(range(a), range(b)):\n",
|
117 |
+
" assert Xab[ia, jb] == Xab[ia, :][jb]\n",
|
118 |
+
" assert Xab[ia, jb] == Xab[:, jb][ia]"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "markdown",
|
123 |
+
"metadata": {},
|
124 |
+
"source": [
|
125 |
+
"## 2.3.2 Broadcasting\n",
|
126 |
+
"### Figure 10: Broadcasting\n",
|
127 |
+
"<img src=\"SVG/broadcasting0.svg\" width=\"700\">\n",
|
128 |
+
"<img src=\"SVG/broadcasting0a.svg\" width=\"700\">"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"cell_type": "code",
|
133 |
+
"execution_count": 23,
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [],
|
136 |
+
"source": [
|
137 |
+
"a, b, c, d = [3], [2], [4], [3]\n",
|
138 |
+
"T = torch.Tensor\n",
|
139 |
+
"\n",
|
140 |
+
"# We have some function from a to b;\n",
|
141 |
+
"def G(Xa: T) -> T:\n",
|
142 |
+
" \"\"\" G: a -> b \"\"\"\n",
|
143 |
+
" return sum(Xa**2) + torch.ones(b)\n",
|
144 |
+
"\n",
|
145 |
+
"# We could bootstrap a definition of broadcasting,\n",
|
146 |
+
"# Note that we are using spaces to indicate tensoring. \n",
|
147 |
+
"# We will use commas for tupling, which is in line with standard notation while writing code.\n",
|
148 |
+
"def Gc(Xac: T) -> T:\n",
|
149 |
+
" \"\"\" G c : a c -> b c \"\"\"\n",
|
150 |
+
" Ybc = torch.zeros(b + c)\n",
|
151 |
+
" for j in range(c[0]):\n",
|
152 |
+
" Ybc[:,jc] = G(Xac[:,jc])\n",
|
153 |
+
" return Ybc\n",
|
154 |
+
"\n",
|
155 |
+
"# Or use a PyTorch command,\n",
|
156 |
+
"# G *: a * -> b *\n",
|
157 |
+
"Gs = torch.vmap(G, -1, -1)\n",
|
158 |
+
"\n",
|
159 |
+
"# We feed a random input, and see whether applying an index before or after\n",
|
160 |
+
"# gives the same result.\n",
|
161 |
+
"Xac = torch.rand(a + c)\n",
|
162 |
+
"for jc in range(c[0]):\n",
|
163 |
+
" assert torch.allclose(G(Xac[:,jc]), Gc(Xac)[:,jc])\n",
|
164 |
+
" assert torch.allclose(G(Xac[:,jc]), Gs(Xac)[:,jc])\n",
|
165 |
+
"\n",
|
166 |
+
"# This shows how our definition of broadcasting lines up with that used by PyTorch vmap."
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "markdown",
|
171 |
+
"metadata": {},
|
172 |
+
"source": [
|
173 |
+
"### Figure 11: Inner Broadcasting\n",
|
174 |
+
"<img src=\"SVG/inner_broadcasting0.svg\" width=\"700\">\n",
|
175 |
+
"<img src=\"SVG/inner broadcasting0a.svg\" width=\"700\">"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "code",
|
180 |
+
"execution_count": 24,
|
181 |
+
"metadata": {},
|
182 |
+
"outputs": [],
|
183 |
+
"source": [
|
184 |
+
"a, b, c, d = [3], [2], [4], [3]\n",
|
185 |
+
"T = torch.Tensor\n",
|
186 |
+
"\n",
|
187 |
+
"# We have some function which can be inner broadcast,\n",
|
188 |
+
"def H(Xa: T, Xd: T) -> T:\n",
|
189 |
+
" \"\"\" H: a, d -> b \"\"\"\n",
|
190 |
+
" return torch.sum(torch.sqrt(Xa**2)) + torch.sum(torch.sqrt(Xd ** 2)) + torch.ones(b)\n",
|
191 |
+
"\n",
|
192 |
+
"# We can bootstrap inner broadcasting,\n",
|
193 |
+
"def Hc0(Xca: T, Xd : T) -> T:\n",
|
194 |
+
" \"\"\" c0 H: c a, d -> c d \"\"\"\n",
|
195 |
+
" # Recall that we defined a, b, c, d in [_] arrays.\n",
|
196 |
+
" Ycb = torch.zeros(c + b)\n",
|
197 |
+
" for ic in range(c[0]):\n",
|
198 |
+
" Ycb[ic, :] = H(Xca[ic, :], Xd)\n",
|
199 |
+
" return Ycb\n",
|
200 |
+
"\n",
|
201 |
+
"# But vmap offers a clear way of doing it,\n",
|
202 |
+
"# *0 H: * a, d -> * c\n",
|
203 |
+
"Hs0 = torch.vmap(H, (0, None), 0)\n",
|
204 |
+
"\n",
|
205 |
+
"# We can show this satisfies Definition 2.14 by,\n",
|
206 |
+
"Xca = torch.rand(c + a)\n",
|
207 |
+
"Xd = torch.rand(d)\n",
|
208 |
+
"for ic in range(c[0]):\n",
|
209 |
+
" assert torch.allclose(Hc0(Xca, Xd)[ic, :], H(Xca[ic, :], Xd))\n",
|
210 |
+
" assert torch.allclose(Hs0(Xca, Xd)[ic, :], H(Xca[ic, :], Xd))\n"
|
211 |
+
]
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"cell_type": "markdown",
|
215 |
+
"metadata": {},
|
216 |
+
"source": [
|
217 |
+
"### Figure 12 Elementwise operations\n",
|
218 |
+
"<img src=\"SVG/elementwise0.svg\" width=\"700\">"
|
219 |
+
]
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"cell_type": "code",
|
223 |
+
"execution_count": 25,
|
224 |
+
"metadata": {},
|
225 |
+
"outputs": [],
|
226 |
+
"source": [
|
227 |
+
"\n",
|
228 |
+
"# Elementwise operations are implemented as usual ie\n",
|
229 |
+
"def f(x):\n",
|
230 |
+
" \"f : 1 -> 1\"\n",
|
231 |
+
" return x ** 2\n",
|
232 |
+
"\n",
|
233 |
+
"# We broadcast an elementwise operation,\n",
|
234 |
+
"# f *: * -> *\n",
|
235 |
+
"fs = torch.vmap(f)\n",
|
236 |
+
"\n",
|
237 |
+
"Xa = torch.rand(a)\n",
|
238 |
+
"for i in range(a[0]):\n",
|
239 |
+
" # And see that it aligns with the index before = index after framework.\n",
|
240 |
+
" assert torch.allclose(f(Xa[i]), fs(Xa)[i])\n",
|
241 |
+
" # But, elementwise operations are implied, so no special implementation is needed. \n",
|
242 |
+
" assert torch.allclose(f(Xa[i]), f(Xa)[i])"
|
243 |
+
]
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"cell_type": "markdown",
|
247 |
+
"metadata": {},
|
248 |
+
"source": [
|
249 |
+
"# 2.4 Linearity\n",
|
250 |
+
"## 2.4.2 Implementing Linearity and Common Operations\n",
|
251 |
+
"### Figure 17: Multi-head Attention and Einsum\n",
|
252 |
+
"<img src=\"SVG/implementation.svg\" width=\"700\">"
|
253 |
+
]
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"cell_type": "code",
|
257 |
+
"execution_count": 26,
|
258 |
+
"metadata": {},
|
259 |
+
"outputs": [],
|
260 |
+
"source": [
|
261 |
+
"import math\n",
|
262 |
+
"import einops\n",
|
263 |
+
"x, y, k, h = 5, 3, 4, 2\n",
|
264 |
+
"Q = torch.rand([y, k, h])\n",
|
265 |
+
"K = torch.rand([x, k, h])\n",
|
266 |
+
"\n",
|
267 |
+
"# Local memory contains,\n",
|
268 |
+
"# Q: y k h # K: x k h\n",
|
269 |
+
"# Outer products, transposes, inner products, and\n",
|
270 |
+
"# diagonalization reduce to einops expressions.\n",
|
271 |
+
"# Transpose K,\n",
|
272 |
+
"K = einops.einsum(K, 'x k h -> k x h')\n",
|
273 |
+
"# Outer product and diagonalize,\n",
|
274 |
+
"X = einops.einsum(Q, K, 'y k1 h, k2 x h -> y k1 k2 x h')\n",
|
275 |
+
"# Inner product,\n",
|
276 |
+
"X = einops.einsum(X, 'y k k x h -> y x h')\n",
|
277 |
+
"# Scale,\n",
|
278 |
+
"X = X / math.sqrt(k)\n",
|
279 |
+
"\n",
|
280 |
+
"Q = torch.rand([y, k, h])\n",
|
281 |
+
"K = torch.rand([x, k, h])\n",
|
282 |
+
"\n",
|
283 |
+
"# Local memory contains,\n",
|
284 |
+
"# Q: y k h # K: x k h\n",
|
285 |
+
"X = einops.einsum(Q, K, 'y k h, x k h -> y x h')\n",
|
286 |
+
"X = X / math.sqrt(k)\n"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"cell_type": "markdown",
|
291 |
+
"metadata": {},
|
292 |
+
"source": [
|
293 |
+
"## 2.4.3 Linear Algebra\n",
|
294 |
+
"### Figure 18: Graphical Linear Algebra\n",
|
295 |
+
"<img src=\"SVG/linear_algebra.svg\" width=\"700\">"
|
296 |
+
]
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"cell_type": "code",
|
300 |
+
"execution_count": 27,
|
301 |
+
"metadata": {},
|
302 |
+
"outputs": [],
|
303 |
+
"source": [
|
304 |
+
"# We will do an exercise implementing some of these equivalences.\n",
|
305 |
+
"# The reader can follow this exercise to get a better sense of how linear functions can be implemented,\n",
|
306 |
+
"# and how different forms are equivalent.\n",
|
307 |
+
"\n",
|
308 |
+
"a, b, c, d = [3], [4], [5], [3]\n",
|
309 |
+
"\n",
|
310 |
+
"# We will be using this function *a lot*\n",
|
311 |
+
"es = einops.einsum\n",
|
312 |
+
"\n",
|
313 |
+
"# F: a b c\n",
|
314 |
+
"F_matrix = torch.rand(a + b + c)\n",
|
315 |
+
"\n",
|
316 |
+
"# As an exericse we will show that the linear map F: a -> b c can be transposed in two ways.\n",
|
317 |
+
"# Either, we can broadcast, or take an outer product. We will show these are the same.\n",
|
318 |
+
"\n",
|
319 |
+
"# Transposing by broadcasting\n",
|
320 |
+
"# \n",
|
321 |
+
"def F_func(Xa: T):\n",
|
322 |
+
" \"\"\" F: a -> b c \"\"\"\n",
|
323 |
+
" return es(Xa,F_matrix,'a,a b c->b c',)\n",
|
324 |
+
"# * F: * a -> * b c\n",
|
325 |
+
"F_broadcast = torch.vmap(F_func, 0, 0)\n",
|
326 |
+
"\n",
|
327 |
+
"# We then reduce it, as in the diagram,\n",
|
328 |
+
"# b a -> b b c -> c\n",
|
329 |
+
"def F_broadcast_transpose(Xba: T):\n",
|
330 |
+
" \"\"\" (b F) (.b c): b a -> c \"\"\"\n",
|
331 |
+
" Xbbc = F_broadcast(Xba)\n",
|
332 |
+
" return es(Xbbc, 'b b c -> c')\n",
|
333 |
+
"\n",
|
334 |
+
"# Transpoing by linearity\n",
|
335 |
+
"#\n",
|
336 |
+
"# We take the outer product of Id(b) and F, and follow up with a inner product.\n",
|
337 |
+
"# This gives us,\n",
|
338 |
+
"F_outerproduct = es(torch.eye(b[0]), F_matrix,'b0 b1, a b2 c->b0 b1 a b2 c',)\n",
|
339 |
+
"# Think of this as Id(b) F: b0 a -> b1 b2 c arranged into an associated b0 b1 a b2 c tensor.\n",
|
340 |
+
"# We then take the inner product. This gives a (b a c) matrix, which can be used for a (b a -> c) map.\n",
|
341 |
+
"F_linear_transpose = es(F_outerproduct,'b B a B c->b a c',)\n",
|
342 |
+
"\n",
|
343 |
+
"# We contend that these are the same.\n",
|
344 |
+
"#\n",
|
345 |
+
"Xba = torch.rand(b + a)\n",
|
346 |
+
"assert torch.allclose(\n",
|
347 |
+
" F_broadcast_transpose(Xba), \n",
|
348 |
+
" es(Xba,F_linear_transpose, 'b a, b a c -> c'))\n",
|
349 |
+
"\n",
|
350 |
+
"# Furthermore, lets prove the unit-inner product identity.\n",
|
351 |
+
"#\n",
|
352 |
+
"# The first step is an outer product with the unit,\n",
|
353 |
+
"outerUnit = lambda Xb: es(Xb, torch.eye(b[0]), 'b0, b1 b2 -> b0 b1 b2')\n",
|
354 |
+
"# The next is a inner product over the first two axes,\n",
|
355 |
+
"dotOuter = lambda Xbbb: es(Xbbb, 'b0 b0 b1 -> b1')\n",
|
356 |
+
"# Applying both of these *should* be the identity, and hence leave any input unchanged.\n",
|
357 |
+
"Xb = torch.rand(b)\n",
|
358 |
+
"assert torch.allclose(\n",
|
359 |
+
" Xb,\n",
|
360 |
+
" dotOuter(outerUnit(Xb)))\n",
|
361 |
+
"\n",
|
362 |
+
"# Therefore, we can confidently use the expressions in Figure 18 to manipulate expressions."
|
363 |
+
]
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"cell_type": "markdown",
|
367 |
+
"metadata": {},
|
368 |
+
"source": [
|
369 |
+
"# 3.1 Basic Multi-Layer Perceptron\n",
|
370 |
+
"### Figure 19: Implementing a Basic Multi-Layer Perceptron\n",
|
371 |
+
"<img src=\"SVG/imagerec.svg\" width=\"700\">"
|
372 |
+
]
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"cell_type": "code",
|
376 |
+
"execution_count": 28,
|
377 |
+
"metadata": {},
|
378 |
+
"outputs": [
|
379 |
+
{
|
380 |
+
"data": {
|
381 |
+
"text/plain": [
|
382 |
+
"Softmax(\n",
|
383 |
+
" dim=tensor([[ 0.0150, -0.0301, 0.1395, -0.0558, 0.0024, -0.0613, -0.0163, 0.0134,\n",
|
384 |
+
" 0.0577, -0.0624]], grad_fn=<AddmmBackward0>)\n",
|
385 |
+
")"
|
386 |
+
]
|
387 |
+
},
|
388 |
+
"execution_count": 28,
|
389 |
+
"metadata": {},
|
390 |
+
"output_type": "execute_result"
|
391 |
+
}
|
392 |
+
],
|
393 |
+
"source": [
|
394 |
+
"import torch.nn as nn\n",
|
395 |
+
"# Basic Image Recogniser\n",
|
396 |
+
"# This is a close copy of an introductory PyTorch tutorial:\n",
|
397 |
+
"# https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html\n",
|
398 |
+
"class BasicImageRecogniser(nn.Module):\n",
|
399 |
+
" def __init__(self):\n",
|
400 |
+
" super().__init__()\n",
|
401 |
+
" self.flatten = nn.Flatten()\n",
|
402 |
+
" self.linear_relu_stack = nn.Sequential(\n",
|
403 |
+
" nn.Linear(28*28, 512),\n",
|
404 |
+
" nn.ReLU(),\n",
|
405 |
+
" nn.Linear(512, 512),\n",
|
406 |
+
" nn.ReLU(),\n",
|
407 |
+
" nn.Linear(512, 10),\n",
|
408 |
+
" )\n",
|
409 |
+
" def forward(self, x):\n",
|
410 |
+
" x = self.flatten(x)\n",
|
411 |
+
" x = self.linear_relu_stack(x)\n",
|
412 |
+
" y_pred = nn.Softmax(x)\n",
|
413 |
+
" return y_pred\n",
|
414 |
+
" \n",
|
415 |
+
"my_BasicImageRecogniser = BasicImageRecogniser()\n",
|
416 |
+
"my_BasicImageRecogniser.forward(torch.rand([1,28,28]))"
|
417 |
+
]
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"cell_type": "markdown",
|
421 |
+
"metadata": {},
|
422 |
+
"source": [
|
423 |
+
"# 3.2 Neural Circuit Diagrams for the Transformer Architecture\n",
|
424 |
+
"### Figure 20: Scaled Dot-Product Attention\n",
|
425 |
+
"<img src=\"SVG/scaled_attention.svg\" width=\"700\">"
|
426 |
+
]
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"cell_type": "code",
|
430 |
+
"execution_count": 29,
|
431 |
+
"metadata": {},
|
432 |
+
"outputs": [],
|
433 |
+
"source": [
|
434 |
+
"# Note, that we need to accomodate batches, hence the ... to capture additional axes.\n",
|
435 |
+
"\n",
|
436 |
+
"# We can do the algorithm step by step,\n",
|
437 |
+
"def ScaledDotProductAttention(q: T, k: T, v: T) -> T:\n",
|
438 |
+
" ''' yk, xk, xk -> yk '''\n",
|
439 |
+
" klength = k.size()[-1]\n",
|
440 |
+
" # Transpose\n",
|
441 |
+
" k = einops.einsum(k, '... x k -> ... k x')\n",
|
442 |
+
" # Matrix Multiply / Inner Product\n",
|
443 |
+
" x = einops.einsum(q, k, '... y k, ... k x -> ... y x')\n",
|
444 |
+
" # Scale\n",
|
445 |
+
" x = x / math.sqrt(klength)\n",
|
446 |
+
" # SoftMax\n",
|
447 |
+
" x = torch.nn.Softmax(-1)(x)\n",
|
448 |
+
" # Matrix Multiply / Inner Product\n",
|
449 |
+
" x = einops.einsum(x, v, '... y x, ... x k -> ... y k')\n",
|
450 |
+
" return x\n",
|
451 |
+
"\n",
|
452 |
+
"# Alternatively, we can simultaneously broadcast linear functions.\n",
|
453 |
+
"def ScaledDotProductAttention(q: T, k: T, v: T) -> T:\n",
|
454 |
+
" ''' yk, xk, xk -> yk '''\n",
|
455 |
+
" klength = k.size()[-1]\n",
|
456 |
+
" # Inner Product and Scale\n",
|
457 |
+
" x = einops.einsum(q, k, '... y k, ... x k -> ... y x')\n",
|
458 |
+
" # Scale and SoftMax \n",
|
459 |
+
" x = torch.nn.Softmax(-1)(x / math.sqrt(klength))\n",
|
460 |
+
" # Final Inner Product\n",
|
461 |
+
" x = einops.einsum(x, v, '... y x, ... x k -> ... y k')\n",
|
462 |
+
" return x"
|
463 |
+
]
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"cell_type": "markdown",
|
467 |
+
"metadata": {},
|
468 |
+
"source": [
|
469 |
+
"### Figure 21: Multi-Head Attention\n",
|
470 |
+
"<img src=\"SVG/multihead0.svg\" width=\"700\">\n",
|
471 |
+
"\n",
|
472 |
+
"We will be implementing this algorithm. This shows us how we go from diagrams to implementations, and begins to give an idea of how organized diagrams leads to organized code."
|
473 |
+
]
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"cell_type": "code",
|
477 |
+
"execution_count": 30,
|
478 |
+
"metadata": {},
|
479 |
+
"outputs": [],
|
480 |
+
"source": [
|
481 |
+
"def MultiHeadDotProductAttention(q: T, k: T, v: T) -> T:\n",
|
482 |
+
" ''' ykh, xkh, xkh -> ykh '''\n",
|
483 |
+
" klength = k.size()[-2]\n",
|
484 |
+
" x = einops.einsum(q, k, '... y k h, ... x k h -> ... y x h')\n",
|
485 |
+
" x = torch.nn.Softmax(-2)(x / math.sqrt(klength))\n",
|
486 |
+
" x = einops.einsum(x, v, '... y x h, ... x k h -> ... y k h')\n",
|
487 |
+
" return x\n",
|
488 |
+
"\n",
|
489 |
+
"# We implement this component as a neural network model.\n",
|
490 |
+
"# This is necessary when there are bold, learned components that need to be initialized.\n",
|
491 |
+
"class MultiHeadAttention(nn.Module):\n",
|
492 |
+
" # Multi-Head attention has various settings, which become variables\n",
|
493 |
+
" # for the initializer.\n",
|
494 |
+
" def __init__(self, m, k, h):\n",
|
495 |
+
" super().__init__()\n",
|
496 |
+
" self.m, self.k, self.h = m, k, h\n",
|
497 |
+
" # Set up all the boldface, learned components\n",
|
498 |
+
" # Note how they bind axes we want to split, which we do later with einops.\n",
|
499 |
+
" self.Lq = nn.Linear(m, k*h, False)\n",
|
500 |
+
" self.Lk = nn.Linear(m, k*h, False)\n",
|
501 |
+
" self.Lv = nn.Linear(m, k*h, False)\n",
|
502 |
+
" self.Lo = nn.Linear(k*h, m, False)\n",
|
503 |
+
"\n",
|
504 |
+
"\n",
|
505 |
+
" # We have endogenous data (Eym) and external / injected data (Xxm)\n",
|
506 |
+
" def forward(self, Eym, Xxm):\n",
|
507 |
+
" \"\"\" y m, x m -> y m \"\"\"\n",
|
508 |
+
" # We first generate query, key, and value vectors.\n",
|
509 |
+
" # Linear layers are automatically broadcast.\n",
|
510 |
+
"\n",
|
511 |
+
" # However, the k and h axes are bound. We define an unbinder to handle the outputs,\n",
|
512 |
+
" unbind = lambda x: einops.rearrange(x, '... (k h)->... k h', h=self.h)\n",
|
513 |
+
" q = unbind(self.Lq(Eym))\n",
|
514 |
+
" k = unbind(self.Lk(Xxm))\n",
|
515 |
+
" v = unbind(self.Lv(Xxm))\n",
|
516 |
+
"\n",
|
517 |
+
" # We feed q, k, and v to standard Multi-Head inner product Attention\n",
|
518 |
+
" o = MultiHeadDotProductAttention(q, k, v)\n",
|
519 |
+
"\n",
|
520 |
+
" # Rebind to feed to the final learned layer,\n",
|
521 |
+
" o = einops.rearrange(o, '... k h-> ... (k h)', h=self.h)\n",
|
522 |
+
" return self.Lo(o)\n",
|
523 |
+
"\n",
|
524 |
+
"# Now we can run it on fake data;\n",
|
525 |
+
"y, x, m, jc, heads = [20], [22], [128], [16], 4\n",
|
526 |
+
"# Internal Data\n",
|
527 |
+
"Eym = torch.rand(y + m)\n",
|
528 |
+
"# External Data\n",
|
529 |
+
"Xxm = torch.rand(x + m)\n",
|
530 |
+
"\n",
|
531 |
+
"mha = MultiHeadAttention(m[0],jc[0],heads)\n",
|
532 |
+
"assert list(mha.forward(Eym, Xxm).size()) == y + m\n"
|
533 |
+
]
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"cell_type": "markdown",
|
537 |
+
"metadata": {},
|
538 |
+
"source": [
|
539 |
+
"# 3.4 Computer Vision\n",
|
540 |
+
"\n",
|
541 |
+
"Here, we really start to understand why splitting diagrams into ``fenced off'' blocks aids implementation. \n",
|
542 |
+
"In addition to making diagrams easier to understand and patterns more clearn, blocks indicate how code can structured and organized.\n",
|
543 |
+
"\n",
|
544 |
+
"## Figure 26: Identity Residual Network\n",
|
545 |
+
"<img src=\"SVG/IdResNet_overall.svg\" width=\"700\">\n"
|
546 |
+
]
|
547 |
+
},
|
548 |
+
{
|
549 |
+
"cell_type": "code",
|
550 |
+
"execution_count": 31,
|
551 |
+
"metadata": {},
|
552 |
+
"outputs": [],
|
553 |
+
"source": [
|
554 |
+
"# For Figure 26, every fenced off region is its own module.\n",
|
555 |
+
"\n",
|
556 |
+
"# Batch norm and then activate is a repeated motif,\n",
|
557 |
+
"class NormActivate(nn.Sequential):\n",
|
558 |
+
" def __init__(self, nf, Norm=nn.BatchNorm2d, Activation=nn.ReLU):\n",
|
559 |
+
" super().__init__(Norm(nf), Activation())\n",
|
560 |
+
"\n",
|
561 |
+
"def size_to_string(size):\n",
|
562 |
+
" return \" \".join(map(str,list(size)))\n",
|
563 |
+
"\n",
|
564 |
+
"# The Identity ResNet block breaks down into a manageable sequence of components.\n",
|
565 |
+
"class IdentityResNet(nn.Sequential):\n",
|
566 |
+
" def __init__(self, N=3, n_mu=[16,64,128,256], y=10):\n",
|
567 |
+
" super().__init__(\n",
|
568 |
+
" nn.Conv2d(3, n_mu[0], 3, padding=1),\n",
|
569 |
+
" Block(1, N, n_mu[0], n_mu[1]),\n",
|
570 |
+
" Block(2, N, n_mu[1], n_mu[2]),\n",
|
571 |
+
" Block(2, N, n_mu[2], n_mu[3]),\n",
|
572 |
+
" NormActivate(n_mu[3]),\n",
|
573 |
+
" nn.AdaptiveAvgPool2d(1),\n",
|
574 |
+
" nn.Flatten(),\n",
|
575 |
+
" nn.Linear(n_mu[3], y),\n",
|
576 |
+
" nn.Softmax(-1),\n",
|
577 |
+
" )"
|
578 |
+
]
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"cell_type": "markdown",
|
582 |
+
"metadata": {},
|
583 |
+
"source": [
|
584 |
+
"The Block can be defined in a seperate model, keeping the code manageable and closely connected to the diagram.\n",
|
585 |
+
"\n",
|
586 |
+
"<img src=\"SVG/IdResNet_block.svg\" width=\"700\">"
|
587 |
+
]
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"cell_type": "code",
|
591 |
+
"execution_count": 32,
|
592 |
+
"metadata": {},
|
593 |
+
"outputs": [],
|
594 |
+
"source": [
|
595 |
+
"# We then follow how diagrams define each ``block''\n",
|
596 |
+
"class Block(nn.Sequential):\n",
|
597 |
+
" def __init__(self, s, N, n0, n1):\n",
|
598 |
+
" \"\"\" n0 and n1 as inputs to the initializer are implicit from having them in the domain and codomain in the diagram. \"\"\"\n",
|
599 |
+
" nb = n1 // 4\n",
|
600 |
+
" super().__init__(\n",
|
601 |
+
" *[\n",
|
602 |
+
" NormActivate(n0),\n",
|
603 |
+
" ResidualConnection(\n",
|
604 |
+
" nn.Sequential(\n",
|
605 |
+
" nn.Conv2d(n0, nb, 1, s),\n",
|
606 |
+
" NormActivate(nb),\n",
|
607 |
+
" nn.Conv2d(nb, nb, 3, padding=1),\n",
|
608 |
+
" NormActivate(nb),\n",
|
609 |
+
" nn.Conv2d(nb, n1, 1),\n",
|
610 |
+
" ),\n",
|
611 |
+
" nn.Conv2d(n0, n1, 1, s),\n",
|
612 |
+
" )\n",
|
613 |
+
" ] + [\n",
|
614 |
+
" ResidualConnection(\n",
|
615 |
+
" nn.Sequential(\n",
|
616 |
+
" NormActivate(n1),\n",
|
617 |
+
" nn.Conv2d(n1, nb, 1),\n",
|
618 |
+
" NormActivate(nb),\n",
|
619 |
+
" nn.Conv2d(nb, nb, 3, padding=1),\n",
|
620 |
+
" NormActivate(nb),\n",
|
621 |
+
" nn.Conv2d(nb, n1, 1)\n",
|
622 |
+
" ),\n",
|
623 |
+
" )\n",
|
624 |
+
" ] * N\n",
|
625 |
+
" \n",
|
626 |
+
" ) \n",
|
627 |
+
"# Residual connections are a repeated pattern in the diagram. So, we are motivated to encapsulate them\n",
|
628 |
+
"# as a seperate module.\n",
|
629 |
+
"class ResidualConnection(nn.Module):\n",
|
630 |
+
" def __init__(self, mainline : nn.Module, connection : nn.Module | None = None) -> None:\n",
|
631 |
+
" super().__init__()\n",
|
632 |
+
" self.main = mainline\n",
|
633 |
+
" self.secondary = nn.Identity() if connection == None else connection\n",
|
634 |
+
" def forward(self, x):\n",
|
635 |
+
" return self.main(x) + self.secondary(x)"
|
636 |
+
]
|
637 |
+
},
|
638 |
+
{
|
639 |
+
"cell_type": "code",
|
640 |
+
"execution_count": 33,
|
641 |
+
"metadata": {},
|
642 |
+
"outputs": [],
|
643 |
+
"source": [
|
644 |
+
"# A standard image processing algorithm has inputs shaped b c h w.\n",
|
645 |
+
"b, c, hw = [3], [3], [16, 16]\n",
|
646 |
+
"\n",
|
647 |
+
"idresnet = IdentityResNet()\n",
|
648 |
+
"Xbchw = torch.rand(b + c + hw)\n",
|
649 |
+
"\n",
|
650 |
+
"# And we see if the overall size is maintained,\n",
|
651 |
+
"assert list(idresnet.forward(Xbchw).size()) == b + [10]"
|
652 |
+
]
|
653 |
+
},
|
654 |
+
{
|
655 |
+
"cell_type": "markdown",
|
656 |
+
"metadata": {},
|
657 |
+
"source": [
|
658 |
+
"The UNet is a more complicated algorithm than residual networks. The ``fenced off'' sections help keep our code organized. Diagrams streamline implementation, and helps keep code organized.\n",
|
659 |
+
"\n",
|
660 |
+
"## Figure 27: The UNet architecture\n",
|
661 |
+
"<img src=\"SVG/unet.svg\" width=\"700\">"
|
662 |
+
]
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"cell_type": "code",
|
666 |
+
"execution_count": 34,
|
667 |
+
"metadata": {},
|
668 |
+
"outputs": [],
|
669 |
+
"source": [
|
670 |
+
"# We notice that double convolution where the numbers of channels change is a repeated motif.\n",
|
671 |
+
"# We denote the input with c0 and output with c1. \n",
|
672 |
+
"# This can also be done for subsequent members of an iteration.\n",
|
673 |
+
"# When we go down an iteration eg. 5, 4, etc. we may have the input be c1 and the output c0.\n",
|
674 |
+
"class DoubleConvolution(nn.Sequential):\n",
|
675 |
+
" def __init__(self, c0, c1, Activation=nn.ReLU):\n",
|
676 |
+
" super().__init__(\n",
|
677 |
+
" nn.Conv2d(c0, c1, 3, padding=1),\n",
|
678 |
+
" Activation(),\n",
|
679 |
+
" nn.Conv2d(c0, c1, 3, padding=1),\n",
|
680 |
+
" Activation(),\n",
|
681 |
+
" )\n",
|
682 |
+
"\n",
|
683 |
+
"# The model is specified for a very specific number of layers,\n",
|
684 |
+
"# so we will not make it very flexible.\n",
|
685 |
+
"class UNet(nn.Module):\n",
|
686 |
+
" def __init__(self, y=2):\n",
|
687 |
+
" super().__init__()\n",
|
688 |
+
" # Set up the channel sizes;\n",
|
689 |
+
" c = [1 if i == 0 else 64 * 2 ** i for i in range(6)]\n",
|
690 |
+
"\n",
|
691 |
+
" # Saving and loading from memory means we can not use a single,\n",
|
692 |
+
" # sequential chain.\n",
|
693 |
+
"\n",
|
694 |
+
" # Set up and initialize the components;\n",
|
695 |
+
" self.DownScaleBlocks = [\n",
|
696 |
+
" DownScaleBlock(c[i],c[i+1])\n",
|
697 |
+
" for i in range(0,4)\n",
|
698 |
+
" ] # Note how this imitates the lambda operators in the diagram.\n",
|
699 |
+
" self.middleDoubleConvolution = DoubleConvolution(c[4], c[5])\n",
|
700 |
+
" self.middleUpscale = nn.ConvTranspose2d(c[5], c[4], 2, 2, 1)\n",
|
701 |
+
" self.upScaleBlocks = [\n",
|
702 |
+
" UpScaleBlock(c[5-i],c[4-i])\n",
|
703 |
+
" for i in range(1,4)\n",
|
704 |
+
" ]\n",
|
705 |
+
" self.finalConvolution = nn.Conv2d(c[1], y)\n",
|
706 |
+
"\n",
|
707 |
+
" def forward(self, x):\n",
|
708 |
+
" cLambdas = []\n",
|
709 |
+
" for dsb in self.DownScaleBlocks:\n",
|
710 |
+
" x, cLambda = dsb(x)\n",
|
711 |
+
" cLambdas.append(cLambda)\n",
|
712 |
+
" x = self.middleDoubleConvolution(x)\n",
|
713 |
+
" x = self.middleUpscale(x)\n",
|
714 |
+
" for usb in self.upScaleBlocks:\n",
|
715 |
+
" cLambda = cLambdas.pop()\n",
|
716 |
+
" x = usb(x, cLambda)\n",
|
717 |
+
" x = self.finalConvolution(x)\n",
|
718 |
+
"\n",
|
719 |
+
"class DownScaleBlock(nn.Module):\n",
|
720 |
+
" def __init__(self, c0, c1) -> None:\n",
|
721 |
+
" super().__init__()\n",
|
722 |
+
" self.doubleConvolution = DoubleConvolution(c0, c1)\n",
|
723 |
+
" self.downScaler = nn.MaxPool2d(2, 2, 1)\n",
|
724 |
+
" def forward(self, x):\n",
|
725 |
+
" cLambda = self.doubleConvolution(x)\n",
|
726 |
+
" x = self.downScaler(cLambda)\n",
|
727 |
+
" return x, cLambda\n",
|
728 |
+
"\n",
|
729 |
+
"class UpScaleBlock(nn.Module):\n",
|
730 |
+
" def __init__(self, c1, c0) -> None:\n",
|
731 |
+
" super().__init__()\n",
|
732 |
+
" self.doubleConvolution = DoubleConvolution(2*c1, c1)\n",
|
733 |
+
" self.upScaler = nn.ConvTranspose2d(c1,c0,2,2,1)\n",
|
734 |
+
" def forward(self, x, cLambda):\n",
|
735 |
+
" # Concatenation occurs over the C channel axis (dim=1)\n",
|
736 |
+
" x = torch.concat(x, cLambda, 1)\n",
|
737 |
+
" x = self.doubleConvolution(x)\n",
|
738 |
+
" x = self.upScaler(x)\n",
|
739 |
+
" return x"
|
740 |
+
]
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"cell_type": "markdown",
|
744 |
+
"metadata": {},
|
745 |
+
"source": [
|
746 |
+
"# 3.5 Vision Transformer\n",
|
747 |
+
"\n",
|
748 |
+
"We adapt our code for Multi-Head Attention to apply it to the vision case. This is a good exercise in how neural circuit diagrams allow code to be easily adapted for new modalities.\n",
|
749 |
+
"## Figure 28: Visual Attention\n",
|
750 |
+
"<img src=\"SVG/visual_attention.svg\" width=\"700\">"
|
751 |
+
]
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"cell_type": "code",
|
755 |
+
"execution_count": 35,
|
756 |
+
"metadata": {},
|
757 |
+
"outputs": [
|
758 |
+
{
|
759 |
+
"data": {
|
760 |
+
"text/plain": [
|
761 |
+
"torch.Size([1, 33, 15, 15])"
|
762 |
+
]
|
763 |
+
},
|
764 |
+
"execution_count": 35,
|
765 |
+
"metadata": {},
|
766 |
+
"output_type": "execute_result"
|
767 |
+
}
|
768 |
+
],
|
769 |
+
"source": [
|
770 |
+
"class VisualAttention(nn.Module):\n",
|
771 |
+
" def __init__(self, c, k, heads = 1, kernel = 1, stride = 1):\n",
|
772 |
+
" super().__init__()\n",
|
773 |
+
" \n",
|
774 |
+
" # w gives the kernel size, which we make adjustable.\n",
|
775 |
+
" self.c, self.k, self.h, self.w = c, k, heads, kernel\n",
|
776 |
+
" # Set up all the boldface, learned components\n",
|
777 |
+
" # Note how standard components may not have axes bound in \n",
|
778 |
+
" # the same way as diagrams. This requires us to rearrange\n",
|
779 |
+
" # using the einops package.\n",
|
780 |
+
"\n",
|
781 |
+
" # The learned layers form convolutions\n",
|
782 |
+
" self.Cq = nn.Conv2d(c, k * heads, kernel, stride)\n",
|
783 |
+
" self.Ck = nn.Conv2d(c, k * heads, kernel, stride)\n",
|
784 |
+
" self.Cv = nn.Conv2d(c, k * heads, kernel, stride)\n",
|
785 |
+
" self.Co = nn.ConvTranspose2d(\n",
|
786 |
+
" k * heads, c, kernel, stride)\n",
|
787 |
+
"\n",
|
788 |
+
" # Defined previously, closely follows the diagram.\n",
|
789 |
+
" def MultiHeadDotProductAttention(self, q: T, k: T, v: T) -> T:\n",
|
790 |
+
" ''' ykh, xkh, xkh -> ykh '''\n",
|
791 |
+
" klength = k.size()[-2]\n",
|
792 |
+
" x = einops.einsum(q, k, '... y k h, ... x k h -> ... y x h')\n",
|
793 |
+
" x = torch.nn.Softmax(-2)(x / math.sqrt(klength))\n",
|
794 |
+
" x = einops.einsum(x, v, '... y x h, ... x k h -> ... y k h')\n",
|
795 |
+
" return x\n",
|
796 |
+
"\n",
|
797 |
+
" # We have endogenous data (EYc) and external / injected data (XXc)\n",
|
798 |
+
" def forward(self, EcY, XcX):\n",
|
799 |
+
" \"\"\" cY, cX -> cY \n",
|
800 |
+
" The visual attention algorithm. Injects information from Xc into Yc. \"\"\"\n",
|
801 |
+
" # query, key, and value vectors.\n",
|
802 |
+
" # We unbind the k h axes which were produced by the convolutions, and feed them\n",
|
803 |
+
" # in the normal manner to MultiHeadDotProductAttention.\n",
|
804 |
+
" unbind = lambda x: einops.rearrange(x, 'N (k h) H W -> N (H W) k h', h=self.h)\n",
|
805 |
+
" # Save size to recover it later\n",
|
806 |
+
" q = self.Cq(EcY)\n",
|
807 |
+
" W = q.size()[-1]\n",
|
808 |
+
"\n",
|
809 |
+
" # By appropriately managing the axes, minimal changes to our previous code\n",
|
810 |
+
" # is necessary.\n",
|
811 |
+
" q = unbind(q)\n",
|
812 |
+
" k = unbind(self.Ck(XcX))\n",
|
813 |
+
" v = unbind(self.Cv(XcX))\n",
|
814 |
+
" o = self.MultiHeadDotProductAttention(q, k, v)\n",
|
815 |
+
"\n",
|
816 |
+
" # Rebind to feed to the transposed convolution layer.\n",
|
817 |
+
" o = einops.rearrange(o, 'N (H W) k h -> N (k h) H W', \n",
|
818 |
+
" h=self.h, W=W)\n",
|
819 |
+
" return self.Co(o)\n",
|
820 |
+
"\n",
|
821 |
+
"# Single batch element,\n",
|
822 |
+
"b = [1]\n",
|
823 |
+
"Y, X, c, k = [16, 16], [16, 16], [33], 8\n",
|
824 |
+
"# The additional configurations,\n",
|
825 |
+
"heads, kernel, stride = 4, 3, 3\n",
|
826 |
+
"\n",
|
827 |
+
"# Internal Data,\n",
|
828 |
+
"EYc = torch.rand(b + c + Y)\n",
|
829 |
+
"# External Data,\n",
|
830 |
+
"XXc = torch.rand(b + c + X)\n",
|
831 |
+
"\n",
|
832 |
+
"# We can now run the algorithm,\n",
|
833 |
+
"visualAttention = VisualAttention(c[0], k, heads, kernel, stride)\n",
|
834 |
+
"\n",
|
835 |
+
"# Interestingly, the height/width reduces by 1 for stride\n",
|
836 |
+
"# values above 1. Otherwise, it stays the same.\n",
|
837 |
+
"visualAttention.forward(EYc, XXc).size()"
|
838 |
+
]
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"cell_type": "markdown",
|
842 |
+
"metadata": {},
|
843 |
+
"source": [
|
844 |
+
"# Appendix"
|
845 |
+
]
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"cell_type": "code",
|
849 |
+
"execution_count": 36,
|
850 |
+
"metadata": {},
|
851 |
+
"outputs": [],
|
852 |
+
"source": [
|
853 |
+
"# A container to track the size of modules,\n",
|
854 |
+
"# Replace a module definition eg.\n",
|
855 |
+
"# > self.Cq = nn.Conv2d(c, k * heads, kernel, stride)\n",
|
856 |
+
"# With;\n",
|
857 |
+
"# > self.Cq = Tracker(nn.Conv2d(c, k * heads, kernel, stride), \"Query convolution\")\n",
|
858 |
+
"# And the input / output sizes (to check diagrams) will be printed.\n",
|
859 |
+
"class Tracker(nn.Module):\n",
|
860 |
+
" def __init__(self, module: nn.Module, name : str = \"\"):\n",
|
861 |
+
" super().__init__()\n",
|
862 |
+
" self.module = module\n",
|
863 |
+
" if name:\n",
|
864 |
+
" self.name = name\n",
|
865 |
+
" else:\n",
|
866 |
+
" self.name = self.module._get_name()\n",
|
867 |
+
" def forward(self, x):\n",
|
868 |
+
" x_size = size_to_string(x.size())\n",
|
869 |
+
" x = self.module.forward(x)\n",
|
870 |
+
" y_size = size_to_string(x.size())\n",
|
871 |
+
" print(f\"{self.name}: \\t {x_size} -> {y_size}\")\n",
|
872 |
+
" return x"
|
873 |
+
]
|
874 |
+
}
|
875 |
+
],
|
876 |
+
"metadata": {
|
877 |
+
"kernelspec": {
|
878 |
+
"display_name": "Python 3",
|
879 |
+
"language": "python",
|
880 |
+
"name": "python3"
|
881 |
+
},
|
882 |
+
"language_info": {
|
883 |
+
"codemirror_mode": {
|
884 |
+
"name": "ipython",
|
885 |
+
"version": 3
|
886 |
+
},
|
887 |
+
"file_extension": ".py",
|
888 |
+
"mimetype": "text/x-python",
|
889 |
+
"name": "python",
|
890 |
+
"nbconvert_exporter": "python",
|
891 |
+
"pygments_lexer": "ipython3",
|
892 |
+
"version": "3.10.11"
|
893 |
+
},
|
894 |
+
"orig_nbformat": 4
|
895 |
+
},
|
896 |
+
"nbformat": 4,
|
897 |
+
"nbformat_minor": 2
|
898 |
+
}
|