vtabbott commited on
Commit
f620f32
1 Parent(s): 95b73c0

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +706 -0
README.md ADDED
@@ -0,0 +1,706 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ```python
2
+ import torch
3
+ import typing
4
+ import functorch
5
+ import itertools
6
+ ```
7
+
8
+ # 2.3 Tensors
9
+ ### We diagrams tensors, which can be vertically and horizontally decomposed.
10
+ <img src="SVG/rediagram.svg" width="700">
11
+
12
+
13
+ ```python
14
+ # This diagram shows a function h : 3, 4 2, 6 -> 1 2 constructed out of f: 4 2, 6 -> 3 3 and g: 3, 3 3 -> 1 2
15
+ # We use assertions and random outputs to represent generic functions, and how diagrams relate to code.
16
+ T = torch.Tensor
17
+ def f(x0 : T, x1 : T):
18
+ """ f: 4 2, 6 -> 3 3 """
19
+ assert x0.size() == torch.Size([4,2])
20
+ assert x1.size() == torch.Size([6])
21
+ return torch.rand([3,3])
22
+ def g(x0 : T, x1: T):
23
+ """ g: 3, 3 3 -> 1 2 """
24
+ assert x0.size() == torch.Size([3])
25
+ assert x1.size() == torch.Size([3, 3])
26
+ return torch.rand([1,2])
27
+ def h(x0 : T, x1 : T, x2 : T):
28
+ """ h: 3, 4 2, 6 -> 1 2"""
29
+ assert x0.size() == torch.Size([3])
30
+ assert x1.size() == torch.Size([4, 2])
31
+ assert x2.size() == torch.Size([6])
32
+ return g(x0, f(x1,x2))
33
+
34
+ h(torch.rand([3]), torch.rand([4, 2]), torch.rand([6]))
35
+ ```
36
+
37
+
38
+
39
+
40
+ tensor([[0.6837, 0.6853]])
41
+
42
+
43
+
44
+ ## 2.3.1 Indexes
45
+ ### Figure 8: Indexes
46
+ <img src="SVG/indexes.svg" width="700">
47
+
48
+
49
+ ```python
50
+ # Extracting a subtensor is a process we are familiar with. Consider,
51
+ # A (4 3) tensor
52
+ table = torch.arange(0,12).view(4,3)
53
+ row = table[2,:]
54
+ row
55
+ ```
56
+
57
+
58
+
59
+
60
+ tensor([6, 7, 8])
61
+
62
+
63
+
64
+ ### Figure 9: Subtensors
65
+ <img src="SVG/subtensors.svg" width="700">
66
+
67
+
68
+ ```python
69
+ # Different orders of access give the same result.
70
+ # Set up a random (5 7) tensor
71
+ a, b = 5, 7
72
+ Xab = torch.rand([a] + [b])
73
+ # Show that all pairs of indexes give the same result
74
+ for ia, jb in itertools.product(range(a), range(b)):
75
+ assert Xab[ia, jb] == Xab[ia, :][jb]
76
+ assert Xab[ia, jb] == Xab[:, jb][ia]
77
+ ```
78
+
79
+ ## 2.3.2 Broadcasting
80
+ ### Figure 10: Broadcasting
81
+ <img src="SVG/broadcasting0.svg" width="700">
82
+ <img src="SVG/broadcasting0a.svg" width="700">
83
+
84
+
85
+ ```python
86
+ a, b, c, d = [3], [2], [4], [3]
87
+ T = torch.Tensor
88
+
89
+ # We have some function from a to b;
90
+ def G(Xa: T) -> T:
91
+ """ G: a -> b """
92
+ return sum(Xa**2) + torch.ones(b)
93
+
94
+ # We could bootstrap a definition of broadcasting,
95
+ # Note that we are using spaces to indicate tensoring.
96
+ # We will use commas for tupling, which is in line with standard notation while writing code.
97
+ def Gc(Xac: T) -> T:
98
+ """ G c : a c -> b c """
99
+ Ybc = torch.zeros(b + c)
100
+ for j in range(c[0]):
101
+ Ybc[:,jc] = G(Xac[:,jc])
102
+ return Ybc
103
+
104
+ # Or use a PyTorch command,
105
+ # G *: a * -> b *
106
+ Gs = torch.vmap(G, -1, -1)
107
+
108
+ # We feed a random input, and see whether applying an index before or after
109
+ # gives the same result.
110
+ Xac = torch.rand(a + c)
111
+ for jc in range(c[0]):
112
+ assert torch.allclose(G(Xac[:,jc]), Gc(Xac)[:,jc])
113
+ assert torch.allclose(G(Xac[:,jc]), Gs(Xac)[:,jc])
114
+
115
+ # This shows how our definition of broadcasting lines up with that used by PyTorch vmap.
116
+ ```
117
+
118
+ ### Figure 11: Inner Broadcasting
119
+ <img src="SVG/inner_broadcasting0.svg" width="700">
120
+ <img src="SVG/inner broadcasting0a.svg" width="700">
121
+
122
+
123
+ ```python
124
+ a, b, c, d = [3], [2], [4], [3]
125
+ T = torch.Tensor
126
+
127
+ # We have some function which can be inner broadcast,
128
+ def H(Xa: T, Xd: T) -> T:
129
+ """ H: a, d -> b """
130
+ return torch.sum(torch.sqrt(Xa**2)) + torch.sum(torch.sqrt(Xd ** 2)) + torch.ones(b)
131
+
132
+ # We can bootstrap inner broadcasting,
133
+ def Hc0(Xca: T, Xd : T) -> T:
134
+ """ c0 H: c a, d -> c d """
135
+ # Recall that we defined a, b, c, d in [_] arrays.
136
+ Ycb = torch.zeros(c + b)
137
+ for ic in range(c[0]):
138
+ Ycb[ic, :] = H(Xca[ic, :], Xd)
139
+ return Ycb
140
+
141
+ # But vmap offers a clear way of doing it,
142
+ # *0 H: * a, d -> * c
143
+ Hs0 = torch.vmap(H, (0, None), 0)
144
+
145
+ # We can show this satisfies Definition 2.14 by,
146
+ Xca = torch.rand(c + a)
147
+ Xd = torch.rand(d)
148
+ for ic in range(c[0]):
149
+ assert torch.allclose(Hc0(Xca, Xd)[ic, :], H(Xca[ic, :], Xd))
150
+ assert torch.allclose(Hs0(Xca, Xd)[ic, :], H(Xca[ic, :], Xd))
151
+
152
+ ```
153
+
154
+ ### Figure 12 Elementwise operations
155
+ <img src="SVG/elementwise0.svg" width="700">
156
+
157
+
158
+ ```python
159
+
160
+ # Elementwise operations are implemented as usual ie
161
+ def f(x):
162
+ "f : 1 -> 1"
163
+ return x ** 2
164
+
165
+ # We broadcast an elementwise operation,
166
+ # f *: * -> *
167
+ fs = torch.vmap(f)
168
+
169
+ Xa = torch.rand(a)
170
+ for i in range(a[0]):
171
+ # And see that it aligns with the index before = index after framework.
172
+ assert torch.allclose(f(Xa[i]), fs(Xa)[i])
173
+ # But, elementwise operations are implied, so no special implementation is needed.
174
+ assert torch.allclose(f(Xa[i]), f(Xa)[i])
175
+ ```
176
+
177
+ # 2.4 Linearity
178
+ ## 2.4.2 Implementing Linearity and Common Operations
179
+ ### Figure 17: Multi-head Attention and Einsum
180
+ <img src="SVG/implementation.svg" width="700">
181
+
182
+
183
+ ```python
184
+ import math
185
+ import einops
186
+ x, y, k, h = 5, 3, 4, 2
187
+ Q = torch.rand([y, k, h])
188
+ K = torch.rand([x, k, h])
189
+
190
+ # Local memory contains,
191
+ # Q: y k h # K: x k h
192
+ # Outer products, transposes, inner products, and
193
+ # diagonalization reduce to einops expressions.
194
+ # Transpose K,
195
+ K = einops.einsum(K, 'x k h -> k x h')
196
+ # Outer product and diagonalize,
197
+ X = einops.einsum(Q, K, 'y k1 h, k2 x h -> y k1 k2 x h')
198
+ # Inner product,
199
+ X = einops.einsum(X, 'y k k x h -> y x h')
200
+ # Scale,
201
+ X = X / math.sqrt(k)
202
+
203
+ Q = torch.rand([y, k, h])
204
+ K = torch.rand([x, k, h])
205
+
206
+ # Local memory contains,
207
+ # Q: y k h # K: x k h
208
+ X = einops.einsum(Q, K, 'y k h, x k h -> y x h')
209
+ X = X / math.sqrt(k)
210
+
211
+ ```
212
+
213
+ ## 2.4.3 Linear Algebra
214
+ ### Figure 18: Graphical Linear Algebra
215
+ <img src="SVG/linear_algebra.svg" width="700">
216
+
217
+
218
+ ```python
219
+ # We will do an exercise implementing some of these equivalences.
220
+ # The reader can follow this exercise to get a better sense of how linear functions can be implemented,
221
+ # and how different forms are equivalent.
222
+
223
+ a, b, c, d = [3], [4], [5], [3]
224
+
225
+ # We will be using this function *a lot*
226
+ es = einops.einsum
227
+
228
+ # F: a b c
229
+ F_matrix = torch.rand(a + b + c)
230
+
231
+ # As an exericse we will show that the linear map F: a -> b c can be transposed in two ways.
232
+ # Either, we can broadcast, or take an outer product. We will show these are the same.
233
+
234
+ # Transposing by broadcasting
235
+ #
236
+ def F_func(Xa: T):
237
+ """ F: a -> b c """
238
+ return es(Xa,F_matrix,'a,a b c->b c',)
239
+ # * F: * a -> * b c
240
+ F_broadcast = torch.vmap(F_func, 0, 0)
241
+
242
+ # We then reduce it, as in the diagram,
243
+ # b a -> b b c -> c
244
+ def F_broadcast_transpose(Xba: T):
245
+ """ (b F) (.b c): b a -> c """
246
+ Xbbc = F_broadcast(Xba)
247
+ return es(Xbbc, 'b b c -> c')
248
+
249
+ # Transpoing by linearity
250
+ #
251
+ # We take the outer product of Id(b) and F, and follow up with a inner product.
252
+ # This gives us,
253
+ F_outerproduct = es(torch.eye(b[0]), F_matrix,'b0 b1, a b2 c->b0 b1 a b2 c',)
254
+ # Think of this as Id(b) F: b0 a -> b1 b2 c arranged into an associated b0 b1 a b2 c tensor.
255
+ # We then take the inner product. This gives a (b a c) matrix, which can be used for a (b a -> c) map.
256
+ F_linear_transpose = es(F_outerproduct,'b B a B c->b a c',)
257
+
258
+ # We contend that these are the same.
259
+ #
260
+ Xba = torch.rand(b + a)
261
+ assert torch.allclose(
262
+ F_broadcast_transpose(Xba),
263
+ es(Xba,F_linear_transpose, 'b a, b a c -> c'))
264
+
265
+ # Furthermore, lets prove the unit-inner product identity.
266
+ #
267
+ # The first step is an outer product with the unit,
268
+ outerUnit = lambda Xb: es(Xb, torch.eye(b[0]), 'b0, b1 b2 -> b0 b1 b2')
269
+ # The next is a inner product over the first two axes,
270
+ dotOuter = lambda Xbbb: es(Xbbb, 'b0 b0 b1 -> b1')
271
+ # Applying both of these *should* be the identity, and hence leave any input unchanged.
272
+ Xb = torch.rand(b)
273
+ assert torch.allclose(
274
+ Xb,
275
+ dotOuter(outerUnit(Xb)))
276
+
277
+ # Therefore, we can confidently use the expressions in Figure 18 to manipulate expressions.
278
+ ```
279
+
280
+ # 3.1 Basic Multi-Layer Perceptron
281
+ ### Figure 19: Implementing a Basic Multi-Layer Perceptron
282
+ <img src="SVG/imagerec.svg" width="700">
283
+
284
+
285
+ ```python
286
+ import torch.nn as nn
287
+ # Basic Image Recogniser
288
+ # This is a close copy of an introductory PyTorch tutorial:
289
+ # https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html
290
+ class BasicImageRecogniser(nn.Module):
291
+ def __init__(self):
292
+ super().__init__()
293
+ self.flatten = nn.Flatten()
294
+ self.linear_relu_stack = nn.Sequential(
295
+ nn.Linear(28*28, 512),
296
+ nn.ReLU(),
297
+ nn.Linear(512, 512),
298
+ nn.ReLU(),
299
+ nn.Linear(512, 10),
300
+ )
301
+ def forward(self, x):
302
+ x = self.flatten(x)
303
+ x = self.linear_relu_stack(x)
304
+ y_pred = nn.Softmax(x)
305
+ return y_pred
306
+
307
+ my_BasicImageRecogniser = BasicImageRecogniser()
308
+ my_BasicImageRecogniser.forward(torch.rand([1,28,28]))
309
+ ```
310
+
311
+
312
+
313
+
314
+ Softmax(
315
+ dim=tensor([[ 0.0150, -0.0301, 0.1395, -0.0558, 0.0024, -0.0613, -0.0163, 0.0134,
316
+ 0.0577, -0.0624]], grad_fn=<AddmmBackward0>)
317
+ )
318
+
319
+
320
+
321
+ # 3.2 Neural Circuit Diagrams for the Transformer Architecture
322
+ ### Figure 20: Scaled Dot-Product Attention
323
+ <img src="SVG/scaled_attention.svg" width="700">
324
+
325
+
326
+ ```python
327
+ # Note, that we need to accomodate batches, hence the ... to capture additional axes.
328
+
329
+ # We can do the algorithm step by step,
330
+ def ScaledDotProductAttention(q: T, k: T, v: T) -> T:
331
+ ''' yk, xk, xk -> yk '''
332
+ klength = k.size()[-1]
333
+ # Transpose
334
+ k = einops.einsum(k, '... x k -> ... k x')
335
+ # Matrix Multiply / Inner Product
336
+ x = einops.einsum(q, k, '... y k, ... k x -> ... y x')
337
+ # Scale
338
+ x = x / math.sqrt(klength)
339
+ # SoftMax
340
+ x = torch.nn.Softmax(-1)(x)
341
+ # Matrix Multiply / Inner Product
342
+ x = einops.einsum(x, v, '... y x, ... x k -> ... y k')
343
+ return x
344
+
345
+ # Alternatively, we can simultaneously broadcast linear functions.
346
+ def ScaledDotProductAttention(q: T, k: T, v: T) -> T:
347
+ ''' yk, xk, xk -> yk '''
348
+ klength = k.size()[-1]
349
+ # Inner Product and Scale
350
+ x = einops.einsum(q, k, '... y k, ... x k -> ... y x')
351
+ # Scale and SoftMax
352
+ x = torch.nn.Softmax(-1)(x / math.sqrt(klength))
353
+ # Final Inner Product
354
+ x = einops.einsum(x, v, '... y x, ... x k -> ... y k')
355
+ return x
356
+ ```
357
+
358
+ ### Figure 21: Multi-Head Attention
359
+ <img src="SVG/multihead0.svg" width="700">
360
+
361
+ We will be implementing this algorithm. This shows us how we go from diagrams to implementations, and begins to give an idea of how organized diagrams leads to organized code.
362
+
363
+
364
+ ```python
365
+ def MultiHeadDotProductAttention(q: T, k: T, v: T) -> T:
366
+ ''' ykh, xkh, xkh -> ykh '''
367
+ klength = k.size()[-2]
368
+ x = einops.einsum(q, k, '... y k h, ... x k h -> ... y x h')
369
+ x = torch.nn.Softmax(-2)(x / math.sqrt(klength))
370
+ x = einops.einsum(x, v, '... y x h, ... x k h -> ... y k h')
371
+ return x
372
+
373
+ # We implement this component as a neural network model.
374
+ # This is necessary when there are bold, learned components that need to be initialized.
375
+ class MultiHeadAttention(nn.Module):
376
+ # Multi-Head attention has various settings, which become variables
377
+ # for the initializer.
378
+ def __init__(self, m, k, h):
379
+ super().__init__()
380
+ self.m, self.k, self.h = m, k, h
381
+ # Set up all the boldface, learned components
382
+ # Note how they bind axes we want to split, which we do later with einops.
383
+ self.Lq = nn.Linear(m, k*h, False)
384
+ self.Lk = nn.Linear(m, k*h, False)
385
+ self.Lv = nn.Linear(m, k*h, False)
386
+ self.Lo = nn.Linear(k*h, m, False)
387
+
388
+
389
+ # We have endogenous data (Eym) and external / injected data (Xxm)
390
+ def forward(self, Eym, Xxm):
391
+ """ y m, x m -> y m """
392
+ # We first generate query, key, and value vectors.
393
+ # Linear layers are automatically broadcast.
394
+
395
+ # However, the k and h axes are bound. We define an unbinder to handle the outputs,
396
+ unbind = lambda x: einops.rearrange(x, '... (k h)->... k h', h=self.h)
397
+ q = unbind(self.Lq(Eym))
398
+ k = unbind(self.Lk(Xxm))
399
+ v = unbind(self.Lv(Xxm))
400
+
401
+ # We feed q, k, and v to standard Multi-Head inner product Attention
402
+ o = MultiHeadDotProductAttention(q, k, v)
403
+
404
+ # Rebind to feed to the final learned layer,
405
+ o = einops.rearrange(o, '... k h-> ... (k h)', h=self.h)
406
+ return self.Lo(o)
407
+
408
+ # Now we can run it on fake data;
409
+ y, x, m, jc, heads = [20], [22], [128], [16], 4
410
+ # Internal Data
411
+ Eym = torch.rand(y + m)
412
+ # External Data
413
+ Xxm = torch.rand(x + m)
414
+
415
+ mha = MultiHeadAttention(m[0],jc[0],heads)
416
+ assert list(mha.forward(Eym, Xxm).size()) == y + m
417
+
418
+ ```
419
+
420
+ # 3.4 Computer Vision
421
+
422
+ Here, we really start to understand why splitting diagrams into ``fenced off'' blocks aids implementation.
423
+ In addition to making diagrams easier to understand and patterns more clearn, blocks indicate how code can structured and organized.
424
+
425
+ ## Figure 26: Identity Residual Network
426
+ <img src="SVG/IdResNet_overall.svg" width="700">
427
+
428
+
429
+
430
+ ```python
431
+ # For Figure 26, every fenced off region is its own module.
432
+
433
+ # Batch norm and then activate is a repeated motif,
434
+ class NormActivate(nn.Sequential):
435
+ def __init__(self, nf, Norm=nn.BatchNorm2d, Activation=nn.ReLU):
436
+ super().__init__(Norm(nf), Activation())
437
+
438
+ def size_to_string(size):
439
+ return " ".join(map(str,list(size)))
440
+
441
+ # The Identity ResNet block breaks down into a manageable sequence of components.
442
+ class IdentityResNet(nn.Sequential):
443
+ def __init__(self, N=3, n_mu=[16,64,128,256], y=10):
444
+ super().__init__(
445
+ nn.Conv2d(3, n_mu[0], 3, padding=1),
446
+ Block(1, N, n_mu[0], n_mu[1]),
447
+ Block(2, N, n_mu[1], n_mu[2]),
448
+ Block(2, N, n_mu[2], n_mu[3]),
449
+ NormActivate(n_mu[3]),
450
+ nn.AdaptiveAvgPool2d(1),
451
+ nn.Flatten(),
452
+ nn.Linear(n_mu[3], y),
453
+ nn.Softmax(-1),
454
+ )
455
+ ```
456
+
457
+ The Block can be defined in a seperate model, keeping the code manageable and closely connected to the diagram.
458
+
459
+ <img src="SVG/IdResNet_block.svg" width="700">
460
+
461
+
462
+ ```python
463
+ # We then follow how diagrams define each ``block''
464
+ class Block(nn.Sequential):
465
+ def __init__(self, s, N, n0, n1):
466
+ """ n0 and n1 as inputs to the initializer are implicit from having them in the domain and codomain in the diagram. """
467
+ nb = n1 // 4
468
+ super().__init__(
469
+ *[
470
+ NormActivate(n0),
471
+ ResidualConnection(
472
+ nn.Sequential(
473
+ nn.Conv2d(n0, nb, 1, s),
474
+ NormActivate(nb),
475
+ nn.Conv2d(nb, nb, 3, padding=1),
476
+ NormActivate(nb),
477
+ nn.Conv2d(nb, n1, 1),
478
+ ),
479
+ nn.Conv2d(n0, n1, 1, s),
480
+ )
481
+ ] + [
482
+ ResidualConnection(
483
+ nn.Sequential(
484
+ NormActivate(n1),
485
+ nn.Conv2d(n1, nb, 1),
486
+ NormActivate(nb),
487
+ nn.Conv2d(nb, nb, 3, padding=1),
488
+ NormActivate(nb),
489
+ nn.Conv2d(nb, n1, 1)
490
+ ),
491
+ )
492
+ ] * N
493
+
494
+ )
495
+ # Residual connections are a repeated pattern in the diagram. So, we are motivated to encapsulate them
496
+ # as a seperate module.
497
+ class ResidualConnection(nn.Module):
498
+ def __init__(self, mainline : nn.Module, connection : nn.Module | None = None) -> None:
499
+ super().__init__()
500
+ self.main = mainline
501
+ self.secondary = nn.Identity() if connection == None else connection
502
+ def forward(self, x):
503
+ return self.main(x) + self.secondary(x)
504
+ ```
505
+
506
+
507
+ ```python
508
+ # A standard image processing algorithm has inputs shaped b c h w.
509
+ b, c, hw = [3], [3], [16, 16]
510
+
511
+ idresnet = IdentityResNet()
512
+ Xbchw = torch.rand(b + c + hw)
513
+
514
+ # And we see if the overall size is maintained,
515
+ assert list(idresnet.forward(Xbchw).size()) == b + [10]
516
+ ```
517
+
518
+ The UNet is a more complicated algorithm than residual networks. The ``fenced off'' sections help keep our code organized. Diagrams streamline implementation, and helps keep code organized.
519
+
520
+ ## Figure 27: The UNet architecture
521
+ <img src="SVG/unet.svg" width="700">
522
+
523
+
524
+ ```python
525
+ # We notice that double convolution where the numbers of channels change is a repeated motif.
526
+ # We denote the input with c0 and output with c1.
527
+ # This can also be done for subsequent members of an iteration.
528
+ # When we go down an iteration eg. 5, 4, etc. we may have the input be c1 and the output c0.
529
+ class DoubleConvolution(nn.Sequential):
530
+ def __init__(self, c0, c1, Activation=nn.ReLU):
531
+ super().__init__(
532
+ nn.Conv2d(c0, c1, 3, padding=1),
533
+ Activation(),
534
+ nn.Conv2d(c0, c1, 3, padding=1),
535
+ Activation(),
536
+ )
537
+
538
+ # The model is specified for a very specific number of layers,
539
+ # so we will not make it very flexible.
540
+ class UNet(nn.Module):
541
+ def __init__(self, y=2):
542
+ super().__init__()
543
+ # Set up the channel sizes;
544
+ c = [1 if i == 0 else 64 * 2 ** i for i in range(6)]
545
+
546
+ # Saving and loading from memory means we can not use a single,
547
+ # sequential chain.
548
+
549
+ # Set up and initialize the components;
550
+ self.DownScaleBlocks = [
551
+ DownScaleBlock(c[i],c[i+1])
552
+ for i in range(0,4)
553
+ ] # Note how this imitates the lambda operators in the diagram.
554
+ self.middleDoubleConvolution = DoubleConvolution(c[4], c[5])
555
+ self.middleUpscale = nn.ConvTranspose2d(c[5], c[4], 2, 2, 1)
556
+ self.upScaleBlocks = [
557
+ UpScaleBlock(c[5-i],c[4-i])
558
+ for i in range(1,4)
559
+ ]
560
+ self.finalConvolution = nn.Conv2d(c[1], y)
561
+
562
+ def forward(self, x):
563
+ cLambdas = []
564
+ for dsb in self.DownScaleBlocks:
565
+ x, cLambda = dsb(x)
566
+ cLambdas.append(cLambda)
567
+ x = self.middleDoubleConvolution(x)
568
+ x = self.middleUpscale(x)
569
+ for usb in self.upScaleBlocks:
570
+ cLambda = cLambdas.pop()
571
+ x = usb(x, cLambda)
572
+ x = self.finalConvolution(x)
573
+
574
+ class DownScaleBlock(nn.Module):
575
+ def __init__(self, c0, c1) -> None:
576
+ super().__init__()
577
+ self.doubleConvolution = DoubleConvolution(c0, c1)
578
+ self.downScaler = nn.MaxPool2d(2, 2, 1)
579
+ def forward(self, x):
580
+ cLambda = self.doubleConvolution(x)
581
+ x = self.downScaler(cLambda)
582
+ return x, cLambda
583
+
584
+ class UpScaleBlock(nn.Module):
585
+ def __init__(self, c1, c0) -> None:
586
+ super().__init__()
587
+ self.doubleConvolution = DoubleConvolution(2*c1, c1)
588
+ self.upScaler = nn.ConvTranspose2d(c1,c0,2,2,1)
589
+ def forward(self, x, cLambda):
590
+ # Concatenation occurs over the C channel axis (dim=1)
591
+ x = torch.concat(x, cLambda, 1)
592
+ x = self.doubleConvolution(x)
593
+ x = self.upScaler(x)
594
+ return x
595
+ ```
596
+
597
+ # 3.5 Vision Transformer
598
+
599
+ We adapt our code for Multi-Head Attention to apply it to the vision case. This is a good exercise in how neural circuit diagrams allow code to be easily adapted for new modalities.
600
+ ## Figure 28: Visual Attention
601
+ <img src="SVG/visual_attention.svg" width="700">
602
+
603
+
604
+ ```python
605
+ class VisualAttention(nn.Module):
606
+ def __init__(self, c, k, heads = 1, kernel = 1, stride = 1):
607
+ super().__init__()
608
+
609
+ # w gives the kernel size, which we make adjustable.
610
+ self.c, self.k, self.h, self.w = c, k, heads, kernel
611
+ # Set up all the boldface, learned components
612
+ # Note how standard components may not have axes bound in
613
+ # the same way as diagrams. This requires us to rearrange
614
+ # using the einops package.
615
+
616
+ # The learned layers form convolutions
617
+ self.Cq = nn.Conv2d(c, k * heads, kernel, stride)
618
+ self.Ck = nn.Conv2d(c, k * heads, kernel, stride)
619
+ self.Cv = nn.Conv2d(c, k * heads, kernel, stride)
620
+ self.Co = nn.ConvTranspose2d(
621
+ k * heads, c, kernel, stride)
622
+
623
+ # Defined previously, closely follows the diagram.
624
+ def MultiHeadDotProductAttention(self, q: T, k: T, v: T) -> T:
625
+ ''' ykh, xkh, xkh -> ykh '''
626
+ klength = k.size()[-2]
627
+ x = einops.einsum(q, k, '... y k h, ... x k h -> ... y x h')
628
+ x = torch.nn.Softmax(-2)(x / math.sqrt(klength))
629
+ x = einops.einsum(x, v, '... y x h, ... x k h -> ... y k h')
630
+ return x
631
+
632
+ # We have endogenous data (EYc) and external / injected data (XXc)
633
+ def forward(self, EcY, XcX):
634
+ """ cY, cX -> cY
635
+ The visual attention algorithm. Injects information from Xc into Yc. """
636
+ # query, key, and value vectors.
637
+ # We unbind the k h axes which were produced by the convolutions, and feed them
638
+ # in the normal manner to MultiHeadDotProductAttention.
639
+ unbind = lambda x: einops.rearrange(x, 'N (k h) H W -> N (H W) k h', h=self.h)
640
+ # Save size to recover it later
641
+ q = self.Cq(EcY)
642
+ W = q.size()[-1]
643
+
644
+ # By appropriately managing the axes, minimal changes to our previous code
645
+ # is necessary.
646
+ q = unbind(q)
647
+ k = unbind(self.Ck(XcX))
648
+ v = unbind(self.Cv(XcX))
649
+ o = self.MultiHeadDotProductAttention(q, k, v)
650
+
651
+ # Rebind to feed to the transposed convolution layer.
652
+ o = einops.rearrange(o, 'N (H W) k h -> N (k h) H W',
653
+ h=self.h, W=W)
654
+ return self.Co(o)
655
+
656
+ # Single batch element,
657
+ b = [1]
658
+ Y, X, c, k = [16, 16], [16, 16], [33], 8
659
+ # The additional configurations,
660
+ heads, kernel, stride = 4, 3, 3
661
+
662
+ # Internal Data,
663
+ EYc = torch.rand(b + c + Y)
664
+ # External Data,
665
+ XXc = torch.rand(b + c + X)
666
+
667
+ # We can now run the algorithm,
668
+ visualAttention = VisualAttention(c[0], k, heads, kernel, stride)
669
+
670
+ # Interestingly, the height/width reduces by 1 for stride
671
+ # values above 1. Otherwise, it stays the same.
672
+ visualAttention.forward(EYc, XXc).size()
673
+ ```
674
+
675
+
676
+
677
+
678
+ torch.Size([1, 33, 15, 15])
679
+
680
+
681
+
682
+ # Appendix
683
+
684
+
685
+ ```python
686
+ # A container to track the size of modules,
687
+ # Replace a module definition eg.
688
+ # > self.Cq = nn.Conv2d(c, k * heads, kernel, stride)
689
+ # With;
690
+ # > self.Cq = Tracker(nn.Conv2d(c, k * heads, kernel, stride), "Query convolution")
691
+ # And the input / output sizes (to check diagrams) will be printed.
692
+ class Tracker(nn.Module):
693
+ def __init__(self, module: nn.Module, name : str = ""):
694
+ super().__init__()
695
+ self.module = module
696
+ if name:
697
+ self.name = name
698
+ else:
699
+ self.name = self.module._get_name()
700
+ def forward(self, x):
701
+ x_size = size_to_string(x.size())
702
+ x = self.module.forward(x)
703
+ y_size = size_to_string(x.size())
704
+ print(f"{self.name}: \t {x_size} -> {y_size}")
705
+ return x
706
+ ```