File size: 27,397 Bytes
43a66d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 |
#!/usr/bin/env python
# based on
# https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/254-llm-chatbot/254-llm-chatbot.ipynb
from config import SUPPORTED_LLM_MODELS
from transformers import AutoModelForCausalLM, AutoConfig
from optimum.intel.openvino import OVModelForCausalLM
import openvino as ov
from pathlib import Path
import shutil
import torch
import logging
import nncf
import gc
from converter import converters, register_configs
register_configs()
model_id = "llama-2-chat-7b"
# model_id = "gemma-2b-it"
# model_id = "red-pajama-3b-chat"
# model_id = "mistral-7b"
model_configuration = SUPPORTED_LLM_MODELS[model_id]
print(f"Selected model {model_id}")
prepare_int4_model = True
prepare_int8_model = False
prepare_fp16_model = False
from optimum.intel import OVWeightQuantizationConfig
nncf.set_log_level(logging.ERROR)
DIRNAME="new_321"
DIRNAME="temp"
pt_model_id = model_configuration["model_id"]
pt_model_name = model_id.split("-")[0]
model_type = AutoConfig.from_pretrained(pt_model_id, trust_remote_code=True).model_type
fp16_model_dir = Path(DIRNAME) / Path(model_id) / "FP16"
int8_model_dir = Path(DIRNAME) / Path(model_id) / "INT8_compressed_weights"
int4_model_dir = Path(DIRNAME) / Path(model_id) / "INT4_compressed_weights"
def convert_to_fp16():
if (fp16_model_dir / "openvino_model.xml").exists():
return
if not model_configuration["remote"]:
remote_code = model_configuration.get("remote_code", False)
model_kwargs = {}
if remote_code:
model_kwargs = {
"trust_remote_code": True,
"config": AutoConfig.from_pretrained(pt_model_id, trust_remote_code=True)
}
ov_model = OVModelForCausalLM.from_pretrained(
pt_model_id, export=True, compile=False, load_in_8bit=False, **model_kwargs
)
ov_model.half()
ov_model.save_pretrained(fp16_model_dir)
del ov_model
else:
model_kwargs = {}
if "revision" in model_configuration:
model_kwargs["revision"] = model_configuration["revision"]
model = AutoModelForCausalLM.from_pretrained(
model_configuration["model_id"],
torch_dtype=torch.float32,
trust_remote_code=True,
**model_kwargs
)
converters[pt_model_name](model, fp16_model_dir)
del model
gc.collect()
def convert_to_int8():
if (int8_model_dir / "openvino_model.xml").exists():
return
int8_model_dir.mkdir(parents=True, exist_ok=True)
if not model_configuration["remote"]:
remote_code = model_configuration.get("remote_code", False)
model_kwargs = {}
if remote_code:
model_kwargs = {
"trust_remote_code": True,
"config": AutoConfig.from_pretrained(pt_model_id, trust_remote_code=True)
}
ov_model = OVModelForCausalLM.from_pretrained(
pt_model_id, export=True, compile=False, load_in_8bit=True, **model_kwargs
)
ov_model.save_pretrained(int8_model_dir)
del ov_model
else:
convert_to_fp16()
ov_model = ov.Core().read_model(fp16_model_dir / "openvino_model.xml")
shutil.copy(fp16_model_dir / "config.json", int8_model_dir / "config.json")
configuration_file = fp16_model_dir / f"configuration_{model_type}.py"
if configuration_file.exists():
shutil.copy(
configuration_file, int8_model_dir / f"configuration_{model_type}.py"
)
compressed_model = nncf.compress_weights(ov_model)
ov.save_model(compressed_model, int8_model_dir / "openvino_model.xml")
del ov_model
del compressed_model
gc.collect()
def convert_to_int4():
compression_configs = {
"zephyr-7b-beta": {
"sym": True,
"group_size": 64,
"ratio": 0.6,
},
"mistral-7b": {
"sym": True,
"group_size": 64,
"ratio": 0.6,
},
"minicpm-2b-dpo": {
"sym": True,
"group_size": 64,
"ratio": 0.6,
},
"gemma-2b-it": {
"sym": True,
"group_size": 64,
# "ratio": 1.0,
"ratio": 0.6,
},
"notus-7b-v1": {
"sym": True,
"group_size": 64,
"ratio": 0.6,
},
"neural-chat-7b-v3-1": {
"sym": True,
"group_size": 64,
"ratio": 0.6,
},
"llama-2-chat-7b": {
"sym": True,
# "group_size": 64,
"group_size": 128,
"ratio": 0.8,
# "ratio": 1.0,
},
"gemma-7b-it": {
"sym": True,
"group_size": 128,
"ratio": 1.0,
},
"chatglm2-6b": {
"sym": True,
"group_size": 128,
"ratio": 0.72,
},
"qwen-7b-chat": {
"sym": True,
"group_size": 128,
"ratio": 0.6
},
'red-pajama-3b-chat': {
"sym": False,
"group_size": 128,
"ratio": 0.5,
},
"default": {
"sym": False,
"group_size": 128,
"ratio": 0.8,
},
}
model_compression_params = compression_configs.get(
model_id, compression_configs["default"]
)
if (int4_model_dir / "openvino_model.xml").exists():
return
int4_model_dir.mkdir(parents=True, exist_ok=True)
if not model_configuration["remote"]:
remote_code = model_configuration.get("remote_code", False)
model_kwargs = {}
if remote_code:
model_kwargs = {
"trust_remote_code" : True,
"config": AutoConfig.from_pretrained(pt_model_id, trust_remote_code=True)
}
ov_model = OVModelForCausalLM.from_pretrained(
pt_model_id, export=True, compile=False,
quantization_config=OVWeightQuantizationConfig(bits=4, **model_compression_params),
**model_kwargs
)
ov_model.save_pretrained(int4_model_dir)
del ov_model
else:
convert_to_fp16()
ov_model = ov.Core().read_model(fp16_model_dir / "openvino_model.xml")
shutil.copy(fp16_model_dir / "config.json", int4_model_dir / "config.json")
configuration_file = fp16_model_dir / f"configuration_{model_type}.py"
if configuration_file.exists():
shutil.copy(
configuration_file, int4_model_dir / f"configuration_{model_type}.py"
)
mode = nncf.CompressWeightsMode.INT4_SYM if model_compression_params["sym"] else \
nncf.CompressWeightsMode.INT4_ASYM
del model_compression_params["sym"]
compressed_model = nncf.compress_weights(ov_model, mode=mode, **model_compression_params)
ov.save_model(compressed_model, int4_model_dir / "openvino_model.xml")
del ov_model
del compressed_model
gc.collect()
if prepare_fp16_model:
convert_to_fp16()
if prepare_int8_model:
convert_to_int8()
if prepare_int4_model:
convert_to_int4()
# TODO
exit()
fp16_weights = fp16_model_dir / "openvino_model.bin"
int8_weights = int8_model_dir / "openvino_model.bin"
int4_weights = int4_model_dir / "openvino_model.bin"
if fp16_weights.exists():
print(f"Size of FP16 model is {fp16_weights.stat().st_size / 1024 / 1024:.2f} MB")
for precision, compressed_weights in zip([8, 4], [int8_weights, int4_weights]):
if compressed_weights.exists():
print(
f"Size of model with INT{precision} compressed weights is {compressed_weights.stat().st_size / 1024 / 1024:.2f} MB"
)
if compressed_weights.exists() and fp16_weights.exists():
print(
f"Compression rate for INT{precision} model: {fp16_weights.stat().st_size / compressed_weights.stat().st_size:.3f}"
)
# ## Select device for inference and model variant
# [back to top ⬆️](#Table-of-contents:)
#
# >**Note**: There may be no speedup for INT4/INT8 compressed models on dGPU.
# In[8]:
core = ov.Core()
device = widgets.Dropdown(
options=core.available_devices + ["AUTO"],
value="CPU",
description="Device:",
disabled=False,
)
device
# The cell below create `OVMPTModel`, `OVQWENModel` and `OVCHATGLM2Model` wrapper based on `OVModelForCausalLM` model.
# In[9]:
from ov_llm_model import model_classes
# The cell below demonstrates how to instantiate model based on selected variant of model weights and inference device
# In[10]:
available_models = []
if int4_model_dir.exists():
available_models.append("INT4")
if int8_model_dir.exists():
available_models.append("INT8")
if fp16_model_dir.exists():
available_models.append("FP16")
model_to_run = widgets.Dropdown(
options=available_models,
value=available_models[0],
description="Model to run:",
disabled=False,
)
model_to_run
# In[11]:
from transformers import AutoTokenizer
if model_to_run.value == "INT4":
model_dir = int4_model_dir
elif model_to_run.value == "INT8":
model_dir = int8_model_dir
else:
model_dir = fp16_model_dir
print(f"Loading model from {model_dir}")
ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""}
# On a GPU device a model is executed in FP16 precision. For red-pajama-3b-chat model there known accuracy
# issues caused by this, which we avoid by setting precision hint to "f32".
if model_id == "red-pajama-3b-chat" and "GPU" in core.available_devices and device.value in ["GPU", "AUTO"]:
ov_config["INFERENCE_PRECISION_HINT"] = "f32"
model_name = model_configuration["model_id"]
class_key = model_id.split("-")[0]
tok = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model_class = (
OVModelForCausalLM
if not model_configuration["remote"]
else model_classes[class_key]
)
ov_model = model_class.from_pretrained(
model_dir,
device=device.value,
ov_config=ov_config,
config=AutoConfig.from_pretrained(model_dir, trust_remote_code=True),
trust_remote_code=True,
)
# In[12]:
tokenizer_kwargs = model_configuration.get("tokenizer_kwargs", {})
test_string = "2 + 2 ="
input_tokens = tok(test_string, return_tensors="pt", **tokenizer_kwargs)
answer = ov_model.generate(**input_tokens, max_new_tokens=2)
print(tok.batch_decode(answer, skip_special_tokens=True)[0])
# ## Run Chatbot
# [back to top ⬆️](#Table-of-contents:)
#
# Now, when model created, we can setup Chatbot interface using [Gradio](https://www.gradio.app/).
# The diagram below illustrates how the chatbot pipeline works
#
# ![generation pipeline](https://user-images.githubusercontent.com/29454499/255523209-d9336491-c7ba-4dc1-98f0-07f23743ce89.png)
#
# As can be seen, the pipeline very similar to instruction-following with only changes that previous conversation history additionally passed as input with next user question for getting wider input context. On the first iteration, the user provided instructions joined to conversation history (if exists) converted to token ids using a tokenizer, then prepared input provided to the model. The model generates probabilities for all tokens in logits format The way the next token will be selected over predicted probabilities is driven by the selected decoding methodology. You can find more information about the most popular decoding methods in this [blog](https://huggingface.co/blog/how-to-generate). The result generation updates conversation history for next conversation step. it makes stronger connection of next question with previously provided and allows user to make clarifications regarding previously provided answers.
# There are several parameters that can control text generation quality:
# * `Temperature` is a parameter used to control the level of creativity in AI-generated text. By adjusting the `temperature`, you can influence the AI model's probability distribution, making the text more focused or diverse.
# Consider the following example: The AI model has to complete the sentence "The cat is ____." with the following token probabilities:
#
# playing: 0.5
# sleeping: 0.25
# eating: 0.15
# driving: 0.05
# flying: 0.05
#
# - **Low temperature** (e.g., 0.2): The AI model becomes more focused and deterministic, choosing tokens with the highest probability, such as "playing."
# - **Medium temperature** (e.g., 1.0): The AI model maintains a balance between creativity and focus, selecting tokens based on their probabilities without significant bias, such as "playing," "sleeping," or "eating."
# - **High temperature** (e.g., 2.0): The AI model becomes more adventurous, increasing the chances of selecting less likely tokens, such as "driving" and "flying."
# * `Top-p`, also known as nucleus sampling, is a parameter used to control the range of tokens considered by the AI model based on their cumulative probability. By adjusting the `top-p` value, you can influence the AI model's token selection, making it more focused or diverse.
# Using the same example with the cat, consider the following top_p settings:
# - **Low top_p** (e.g., 0.5): The AI model considers only tokens with the highest cumulative probability, such as "playing."
# - **Medium top_p** (e.g., 0.8): The AI model considers tokens with a higher cumulative probability, such as "playing," "sleeping," and "eating."
# - **High top_p** (e.g., 1.0): The AI model considers all tokens, including those with lower probabilities, such as "driving" and "flying."
# * `Top-k` is an another popular sampling strategy. In comparison with Top-P, which chooses from the smallest possible set of words whose cumulative probability exceeds the probability P, in Top-K sampling K most likely next words are filtered and the probability mass is redistributed among only those K next words. In our example with cat, if k=3, then only "playing", "sleeping" and "eating" will be taken into account as possible next word.
# * `Repetition Penalty` This parameter can help penalize tokens based on how frequently they occur in the text, including the input prompt. A token that has already appeared five times is penalized more heavily than a token that has appeared only one time. A value of 1 means that there is no penalty and values larger than 1 discourage repeated tokens.
# In[13]:
from threading import Event, Thread
from uuid import uuid4
from typing import List, Tuple
import gradio as gr
from transformers import (
AutoTokenizer,
StoppingCriteria,
StoppingCriteriaList,
TextIteratorStreamer,
)
model_name = model_configuration["model_id"]
start_message = model_configuration["start_message"]
history_template = model_configuration.get("history_template")
current_message_template = model_configuration.get("current_message_template")
stop_tokens = model_configuration.get("stop_tokens")
roles = model_configuration.get("roles")
tokenizer_kwargs = model_configuration.get("tokenizer_kwargs", {})
chinese_examples = [
["你好!"],
["你是谁?"],
["请介绍一下上海"],
["请介绍一下英特尔公司"],
["晚上睡不着怎么办?"],
["给我讲一个年轻人奋斗创业最终取得成功的故事。"],
["给这个故事起一个标题。"],
]
english_examples = [
["Hello there! How are you doing?"],
["What is OpenVINO?"],
["Who are you?"],
["Can you explain to me briefly what is Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["What are some common mistakes to avoid when writing code?"],
[
"Write a 100-word blog post on “Benefits of Artificial Intelligence and OpenVINO“"
],
]
japanese_examples = [
["こんにちは!調子はどうですか?"],
["OpenVINOとは何ですか?"],
["あなたは誰ですか?"],
["Pythonプログラミング言語とは何か簡単に説明してもらえますか?"],
["シンデレラのあらすじを一文で説明してください。"],
["コードを書くときに避けるべきよくある間違いは何ですか?"],
["人工知能と「OpenVINOの利点」について100語程度のブログ記事を書いてください。"],
]
examples = (
chinese_examples
if ("qwen" in model_id or "chatglm" in model_id or "baichuan" in model_id)
else japanese_examples
if ("youri" in model_id)
else english_examples
)
max_new_tokens = 256
class StopOnTokens(StoppingCriteria):
def __init__(self, token_ids):
self.token_ids = token_ids
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
) -> bool:
for stop_id in self.token_ids:
if input_ids[0][-1] == stop_id:
return True
return False
if stop_tokens is not None:
if isinstance(stop_tokens[0], str):
stop_tokens = tok.convert_tokens_to_ids(stop_tokens)
stop_tokens = [StopOnTokens(stop_tokens)]
def default_partial_text_processor(partial_text: str, new_text: str):
"""
helper for updating partially generated answer, used by default
Params:
partial_text: text buffer for storing previosly generated text
new_text: text update for the current step
Returns:
updated text string
"""
partial_text += new_text
return partial_text
text_processor = model_configuration.get(
"partial_text_processor", default_partial_text_processor
)
def convert_history_to_token(history: List[Tuple[str, str]], roles=None):
"""
function for conversion history stored as list pairs of user and assistant messages to tokens according to model expected conversation template
Params:
history: dialogue history
Returns:
history in token format
"""
if roles is None:
text = start_message + "".join(
[
"".join(
[
history_template.format(
num=round, user=item[0], assistant=item[1]
)
]
)
for round, item in enumerate(history[:-1])
]
)
text += "".join(
[
"".join(
[
current_message_template.format(
num=len(history) + 1,
user=history[-1][0],
assistant=history[-1][1],
)
]
)
]
)
input_token = tok(text, return_tensors="pt", **tokenizer_kwargs).input_ids
elif pt_model_name == "chatglm3":
input_ids = []
input_ids.extend(tok.build_single_message(roles[0], "", start_message))
for old_query, response in history[:-1]:
input_ids.extend(tok.build_single_message(roles[1], "", old_query))
input_ids.extend(tok.build_single_message(roles[2], "", response))
input_ids.extend(tok.build_single_message(
roles[1], "", history[-1][0]))
input_ids.extend([tok.get_command(f"<|{roles[2]}|>")])
input_token = tok.batch_encode_plus(
[input_ids], return_tensors="pt", is_split_into_words=True
).input_ids
else:
system_tokens = tok.encode(start_message)
history_tokens = []
for (old_query, response) in history[:-1]:
round_tokens = []
round_tokens.append(roles[0])
round_tokens.extend(tok.encode(old_query))
round_tokens.append(roles[1])
round_tokens.extend(tok.encode(response))
history_tokens = round_tokens + history_tokens
input_tokens = system_tokens + history_tokens
input_tokens.append(roles[0])
input_tokens.extend(tok.encode(history[-1][0]))
input_tokens.append(roles[1])
input_token = torch.LongTensor([input_tokens])
return input_token
def user(message, history):
"""
callback function for updating user messages in interface on submit button click
Params:
message: current message
history: conversation history
Returns:
None
"""
# Append the user's message to the conversation history
return "", history + [[message, ""]]
def bot(history, temperature, top_p, top_k, repetition_penalty, conversation_id):
"""
callback function for running chatbot on submit button click
Params:
history: conversation history
temperature: parameter for control the level of creativity in AI-generated text.
By adjusting the `temperature`, you can influence the AI model's probability distribution, making the text more focused or diverse.
top_p: parameter for control the range of tokens considered by the AI model based on their cumulative probability.
top_k: parameter for control the range of tokens considered by the AI model based on their cumulative probability, selecting number of tokens with highest probability.
repetition_penalty: parameter for penalizing tokens based on how frequently they occur in the text.
conversation_id: unique conversation identifier.
"""
# Construct the input message string for the model by concatenating the current system message and conversation history
# Tokenize the messages string
input_ids = convert_history_to_token(history, roles)
if input_ids.shape[1] > 2000:
history = [history[-1]]
input_ids = convert_history_to_token(history, roles)
streamer = TextIteratorStreamer(
tok, timeout=30.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
temperature=temperature,
do_sample=temperature > 0.0,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
streamer=streamer,
)
if stop_tokens is not None:
generate_kwargs["stopping_criteria"] = StoppingCriteriaList(
stop_tokens)
stream_complete = Event()
def generate_and_signal_complete():
"""
genration function for single thread
"""
global start_time
ov_model.generate(**generate_kwargs)
stream_complete.set()
t1 = Thread(target=generate_and_signal_complete)
t1.start()
# Initialize an empty string to store the generated text
partial_text = ""
for new_text in streamer:
partial_text = text_processor(partial_text, new_text)
history[-1][1] = partial_text
yield history
def get_uuid():
"""
universal unique identifier for thread
"""
return str(uuid4())
with gr.Blocks(
theme=gr.themes.Soft(),
css=".disclaimer {font-variant-caps: all-small-caps;}",
) as demo:
conversation_id = gr.State(get_uuid)
gr.Markdown(
f"""<h1><center>OpenVINO {model_id} Chatbot</center></h1>""")
chatbot = gr.Chatbot(height=500)
with gr.Row():
with gr.Column():
msg = gr.Textbox(
label="Chat Message Box",
placeholder="Chat Message Box",
show_label=False,
container=False,
)
with gr.Column():
with gr.Row():
submit = gr.Button("Submit")
stop = gr.Button("Stop")
clear = gr.Button("Clear")
with gr.Row():
with gr.Accordion("Advanced Options:", open=False):
with gr.Row():
with gr.Column():
with gr.Row():
temperature = gr.Slider(
label="Temperature",
value=0.1,
minimum=0.0,
maximum=1.0,
step=0.1,
interactive=True,
info="Higher values produce more diverse outputs",
)
with gr.Column():
with gr.Row():
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=1.0,
minimum=0.0,
maximum=1,
step=0.01,
interactive=True,
info=(
"Sample from the smallest possible set of tokens whose cumulative probability "
"exceeds top_p. Set to 1 to disable and sample from all tokens."
),
)
with gr.Column():
with gr.Row():
top_k = gr.Slider(
label="Top-k",
value=50,
minimum=0.0,
maximum=200,
step=1,
interactive=True,
info="Sample from a shortlist of top-k tokens — 0 to disable and sample from all tokens.",
)
with gr.Column():
with gr.Row():
repetition_penalty = gr.Slider(
label="Repetition Penalty",
value=1.1,
minimum=1.0,
maximum=2.0,
step=0.1,
interactive=True,
info="Penalize repetition — 1.0 to disable.",
)
gr.Examples(
examples, inputs=msg, label="Click on any example and press the 'Submit' button"
)
submit_event = msg.submit(
fn=user,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=False,
).then(
fn=bot,
inputs=[
chatbot,
temperature,
top_p,
top_k,
repetition_penalty,
conversation_id,
],
outputs=chatbot,
queue=True,
)
submit_click_event = submit.click(
fn=user,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=False,
).then(
fn=bot,
inputs=[
chatbot,
temperature,
top_p,
top_k,
repetition_penalty,
conversation_id,
],
outputs=chatbot,
queue=True,
)
stop.click(
fn=None,
inputs=None,
outputs=None,
cancels=[submit_event, submit_click_event],
queue=False,
)
clear.click(lambda: None, None, chatbot, queue=False)
# if you are launching remotely, specify server_name and server_port
# demo.launch(server_name='your server name', server_port='server port in int')
# if you have any issue to launch on your platform, you can pass share=True to launch method:
# demo.launch(share=True)
# it creates a publicly shareable link for the interface. Read more in the docs: https://gradio.app/docs/
demo.launch()
|