Vu Minh Chien commited on
Commit
80deca2
1 Parent(s): 8768b23

update result

Browse files
Files changed (1) hide show
  1. README.md +8 -2
README.md CHANGED
@@ -23,7 +23,10 @@ model-index:
23
  metrics:
24
  - name: Test WER
25
  type: wer
26
- value: 31.07
 
 
 
27
  ---
28
  # Wav2Vec2-Large-XLSR-53-Japanese
29
  Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese using the [Common Voice](https://huggingface.co/datasets/common_voice) and Japanese speech corpus of Saruwatari-lab, University of Tokyo [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut).
@@ -31,6 +34,9 @@ When using this model, make sure that your speech input is sampled at 16kHz.
31
  ## Usage
32
  The model can be used directly (without a language model) as follows:
33
  ```python
 
 
 
34
  import torch
35
  import torchaudio
36
  import librosa
@@ -111,7 +117,7 @@ def evaluate(batch):
111
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
112
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
113
  ```
114
- **Test Result**: 31.07%
115
  ## Training
116
  The Common Voice `train`, `validation` datasets and Japanese speech corpus `basic5000` datasets were used for training.
117
  The script used for training can be found [here](https://colab.research.google.com/drive/1ZTxoYzgOotUjcyoBf0m8gZj5Kcmu2yGU)
 
23
  metrics:
24
  - name: Test WER
25
  type: wer
26
+ value: 30.837
27
+ - name: Test CER
28
+ type: cer
29
+ value: 17.849
30
  ---
31
  # Wav2Vec2-Large-XLSR-53-Japanese
32
  Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese using the [Common Voice](https://huggingface.co/datasets/common_voice) and Japanese speech corpus of Saruwatari-lab, University of Tokyo [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut).
 
34
  ## Usage
35
  The model can be used directly (without a language model) as follows:
36
  ```python
37
+ !pip install mecab-python3
38
+ !pip install unidic-lite
39
+ !python -m unidic download
40
  import torch
41
  import torchaudio
42
  import librosa
 
117
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
118
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
119
  ```
120
+ **Test Result**: 30.837%
121
  ## Training
122
  The Common Voice `train`, `validation` datasets and Japanese speech corpus `basic5000` datasets were used for training.
123
  The script used for training can be found [here](https://colab.research.google.com/drive/1ZTxoYzgOotUjcyoBf0m8gZj5Kcmu2yGU)