--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: deberta-v3-base-lora-isarcasm results: [] --- # deberta-v3-base-lora-isarcasm This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6943 - Accuracy: 0.1770 - F1: 0.3008 - Precision: 0.1770 - Recall: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 54 | 0.7069 | 0.8286 | 0.0 | 0.0 | 0.0 | | No log | 2.0 | 108 | 0.6931 | 0.8286 | 0.0 | 0.0 | 0.0 | | No log | 3.0 | 162 | 0.6986 | 0.8286 | 0.0 | 0.0 | 0.0 | | No log | 4.0 | 216 | 0.6946 | 0.1714 | 0.2927 | 0.1714 | 1.0 | | No log | 5.0 | 270 | 0.6939 | 0.1714 | 0.2927 | 0.1714 | 1.0 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3