End of training
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/deberta-v3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
model-index:
|
12 |
+
- name: deberta-v3-base-p-tuning-isarcasm
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# deberta-v3-base-p-tuning-isarcasm
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.6620
|
24 |
+
- Accuracy: 0.4476
|
25 |
+
- F1: 0.3603
|
26 |
+
- Precision: 0.2266
|
27 |
+
- Recall: 0.8790
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 0.001
|
47 |
+
- train_batch_size: 32
|
48 |
+
- eval_batch_size: 32
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: cosine
|
52 |
+
- lr_scheduler_warmup_ratio: 0.1
|
53 |
+
- num_epochs: 20
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
59 |
+
| No log | 1.0 | 108 | 0.6889 | 0.3143 | 0.2941 | 0.1786 | 0.8333 |
|
60 |
+
| No log | 2.0 | 216 | 0.7020 | 0.8286 | 0.0 | 0.0 | 0.0 |
|
61 |
+
| No log | 3.0 | 324 | 0.6725 | 0.6286 | 0.2353 | 0.1818 | 0.3333 |
|
62 |
+
| No log | 4.0 | 432 | 0.7169 | 0.1714 | 0.2927 | 0.1714 | 1.0 |
|
63 |
+
| 0.7087 | 5.0 | 540 | 0.6925 | 0.5429 | 0.3846 | 0.25 | 0.8333 |
|
64 |
+
| 0.7087 | 6.0 | 648 | 0.6991 | 0.1714 | 0.2927 | 0.1714 | 1.0 |
|
65 |
+
| 0.7087 | 7.0 | 756 | 0.6780 | 0.8286 | 0.0 | 0.0 | 0.0 |
|
66 |
+
| 0.7087 | 8.0 | 864 | 0.6851 | 0.8286 | 0.0 | 0.0 | 0.0 |
|
67 |
+
| 0.7087 | 9.0 | 972 | 0.6712 | 0.8286 | 0.0 | 0.0 | 0.0 |
|
68 |
+
| 0.7055 | 10.0 | 1080 | 0.6767 | 0.3143 | 0.3333 | 0.2 | 1.0 |
|
69 |
+
| 0.7055 | 11.0 | 1188 | 0.6720 | 0.5714 | 0.4000 | 0.2632 | 0.8333 |
|
70 |
+
| 0.7055 | 12.0 | 1296 | 0.6710 | 0.3714 | 0.3529 | 0.2143 | 1.0 |
|
71 |
+
| 0.7055 | 13.0 | 1404 | 0.6676 | 0.4857 | 0.3077 | 0.2 | 0.6667 |
|
72 |
+
| 0.6916 | 14.0 | 1512 | 0.6735 | 0.3714 | 0.3125 | 0.1923 | 0.8333 |
|
73 |
+
| 0.6916 | 15.0 | 1620 | 0.6762 | 0.3714 | 0.3529 | 0.2143 | 1.0 |
|
74 |
+
| 0.6916 | 16.0 | 1728 | 0.6642 | 0.6286 | 0.3158 | 0.2308 | 0.5 |
|
75 |
+
| 0.6916 | 17.0 | 1836 | 0.6609 | 0.5143 | 0.32 | 0.2105 | 0.6667 |
|
76 |
+
| 0.6916 | 18.0 | 1944 | 0.6632 | 0.4571 | 0.2963 | 0.1905 | 0.6667 |
|
77 |
+
| 0.6798 | 19.0 | 2052 | 0.6640 | 0.4 | 0.2759 | 0.1739 | 0.6667 |
|
78 |
+
| 0.6798 | 20.0 | 2160 | 0.6644 | 0.4 | 0.2759 | 0.1739 | 0.6667 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.32.0
|
84 |
+
- Pytorch 2.1.1+cu121
|
85 |
+
- Datasets 2.14.5
|
86 |
+
- Tokenizers 0.13.3
|