--- license: bsd-3-clause tags: - generated_from_trainer metrics: - accuracy model-index: - name: ast_13-finetuned-ICBHI results: [] --- # ast_13-finetuned-ICBHI This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0981 - Accuracy: 0.5811 - Sensitivity: 0.0484 - Specificity: 0.9785 - Score: 0.5134 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Sensitivity | Specificity | Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:-----------:|:------:| | 1.0311 | 1.0 | 259 | 1.0981 | 0.5811 | 0.0484 | 0.9785 | 0.5134 | | 1.1378 | 2.0 | 518 | 1.0778 | 0.5800 | 0.1427 | 0.9062 | 0.5245 | | 1.0184 | 3.0 | 777 | 1.0696 | 0.5779 | 0.1495 | 0.8973 | 0.5234 | | 1.0743 | 4.0 | 1036 | 1.0705 | 0.5757 | 0.1946 | 0.8599 | 0.5273 | | 0.9974 | 5.0 | 1295 | 1.0692 | 0.5789 | 0.1963 | 0.8644 | 0.5303 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3