wa976 commited on
Commit
5ab9d8a
·
1 Parent(s): f6a618c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bsd-3-clause
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: ast_15-finetuned-ICBHI
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # ast_15-finetuned-ICBHI
16
+
17
+ This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.1688
20
+ - Accuracy: 0.5397
21
+ - Sensitivity: 0.2727
22
+ - Specificity: 0.7389
23
+ - Score: 0.5058
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 3e-05
43
+ - train_batch_size: 4
44
+ - eval_batch_size: 4
45
+ - seed: 42
46
+ - gradient_accumulation_steps: 4
47
+ - total_train_batch_size: 16
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - lr_scheduler_warmup_ratio: 0.1
51
+ - num_epochs: 15
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Sensitivity | Specificity | Score |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:-----------:|:------:|
57
+ | 0.7488 | 1.0 | 259 | 1.1831 | 0.5241 | 0.3551 | 0.6502 | 0.5027 |
58
+ | 0.7831 | 2.0 | 518 | 1.1688 | 0.5397 | 0.2727 | 0.7389 | 0.5058 |
59
+ | 0.7471 | 3.0 | 777 | 1.1593 | 0.5198 | 0.3772 | 0.6261 | 0.5017 |
60
+ | 0.5336 | 4.0 | 1036 | 1.4082 | 0.5281 | 0.3152 | 0.6869 | 0.5011 |
61
+ | 0.3833 | 5.0 | 1295 | 2.0232 | 0.4838 | 0.3840 | 0.5583 | 0.4712 |
62
+ | 0.1721 | 6.0 | 1554 | 2.5558 | 0.4893 | 0.3534 | 0.5906 | 0.4720 |
63
+ | 0.2745 | 7.0 | 1813 | 3.3175 | 0.4900 | 0.3917 | 0.5634 | 0.4775 |
64
+ | 0.0596 | 8.0 | 2072 | 3.6548 | 0.5143 | 0.3628 | 0.6274 | 0.4951 |
65
+ | 0.0034 | 9.0 | 2331 | 3.9119 | 0.5082 | 0.4053 | 0.5849 | 0.4951 |
66
+ | 0.0008 | 10.0 | 2590 | 4.3407 | 0.4875 | 0.4562 | 0.5108 | 0.4835 |
67
+ | 0.0 | 11.0 | 2849 | 4.1927 | 0.5136 | 0.3636 | 0.6255 | 0.4946 |
68
+ | 0.0 | 12.0 | 3108 | 4.2227 | 0.5111 | 0.3645 | 0.6204 | 0.4924 |
69
+ | 0.0 | 13.0 | 3367 | 4.2399 | 0.5114 | 0.3653 | 0.6204 | 0.4929 |
70
+ | 0.0 | 14.0 | 3626 | 4.2521 | 0.5114 | 0.3662 | 0.6198 | 0.4930 |
71
+ | 0.0 | 15.0 | 3885 | 4.2556 | 0.5114 | 0.3662 | 0.6198 | 0.4930 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.29.2
77
+ - Pytorch 2.0.0+cu118
78
+ - Datasets 2.12.0
79
+ - Tokenizers 0.13.3