update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: bsd-3-clause
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: ast_15-finetuned-ICBHI
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# ast_15-finetuned-ICBHI
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.1688
|
20 |
+
- Accuracy: 0.5397
|
21 |
+
- Sensitivity: 0.2727
|
22 |
+
- Specificity: 0.7389
|
23 |
+
- Score: 0.5058
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 3e-05
|
43 |
+
- train_batch_size: 4
|
44 |
+
- eval_batch_size: 4
|
45 |
+
- seed: 42
|
46 |
+
- gradient_accumulation_steps: 4
|
47 |
+
- total_train_batch_size: 16
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- lr_scheduler_warmup_ratio: 0.1
|
51 |
+
- num_epochs: 15
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Sensitivity | Specificity | Score |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:-----------:|:------:|
|
57 |
+
| 0.7488 | 1.0 | 259 | 1.1831 | 0.5241 | 0.3551 | 0.6502 | 0.5027 |
|
58 |
+
| 0.7831 | 2.0 | 518 | 1.1688 | 0.5397 | 0.2727 | 0.7389 | 0.5058 |
|
59 |
+
| 0.7471 | 3.0 | 777 | 1.1593 | 0.5198 | 0.3772 | 0.6261 | 0.5017 |
|
60 |
+
| 0.5336 | 4.0 | 1036 | 1.4082 | 0.5281 | 0.3152 | 0.6869 | 0.5011 |
|
61 |
+
| 0.3833 | 5.0 | 1295 | 2.0232 | 0.4838 | 0.3840 | 0.5583 | 0.4712 |
|
62 |
+
| 0.1721 | 6.0 | 1554 | 2.5558 | 0.4893 | 0.3534 | 0.5906 | 0.4720 |
|
63 |
+
| 0.2745 | 7.0 | 1813 | 3.3175 | 0.4900 | 0.3917 | 0.5634 | 0.4775 |
|
64 |
+
| 0.0596 | 8.0 | 2072 | 3.6548 | 0.5143 | 0.3628 | 0.6274 | 0.4951 |
|
65 |
+
| 0.0034 | 9.0 | 2331 | 3.9119 | 0.5082 | 0.4053 | 0.5849 | 0.4951 |
|
66 |
+
| 0.0008 | 10.0 | 2590 | 4.3407 | 0.4875 | 0.4562 | 0.5108 | 0.4835 |
|
67 |
+
| 0.0 | 11.0 | 2849 | 4.1927 | 0.5136 | 0.3636 | 0.6255 | 0.4946 |
|
68 |
+
| 0.0 | 12.0 | 3108 | 4.2227 | 0.5111 | 0.3645 | 0.6204 | 0.4924 |
|
69 |
+
| 0.0 | 13.0 | 3367 | 4.2399 | 0.5114 | 0.3653 | 0.6204 | 0.4929 |
|
70 |
+
| 0.0 | 14.0 | 3626 | 4.2521 | 0.5114 | 0.3662 | 0.6198 | 0.4930 |
|
71 |
+
| 0.0 | 15.0 | 3885 | 4.2556 | 0.5114 | 0.3662 | 0.6198 | 0.4930 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.29.2
|
77 |
+
- Pytorch 2.0.0+cu118
|
78 |
+
- Datasets 2.12.0
|
79 |
+
- Tokenizers 0.13.3
|