wa976 commited on
Commit
08b2678
·
1 Parent(s): 6201b29

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bsd-3-clause
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: ast_20-finetuned-ICBHI
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # ast_20-finetuned-ICBHI
16
+
17
+ This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.3414
20
+ - Accuracy: 0.6942
21
+ - Sensitivity: 0.5361
22
+ - Specificity: 0.8354
23
+ - Score: 0.6857
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 3e-05
43
+ - train_batch_size: 4
44
+ - eval_batch_size: 4
45
+ - seed: 42
46
+ - gradient_accumulation_steps: 4
47
+ - total_train_batch_size: 16
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - lr_scheduler_warmup_ratio: 0.1
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Sensitivity | Specificity | Score |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:-----------:|:------:|
57
+ | 0.895 | 1.0 | 345 | 0.9921 | 0.6029 | 0.2458 | 0.9218 | 0.5838 |
58
+ | 0.8244 | 2.0 | 690 | 0.8522 | 0.6717 | 0.4147 | 0.9012 | 0.6580 |
59
+ | 0.7002 | 3.0 | 1035 | 0.8378 | 0.6775 | 0.5346 | 0.8052 | 0.6699 |
60
+ | 0.415 | 4.0 | 1380 | 1.0645 | 0.6674 | 0.5392 | 0.7819 | 0.6605 |
61
+ | 0.19 | 5.0 | 1725 | 1.3827 | 0.6732 | 0.5207 | 0.8093 | 0.6650 |
62
+ | 0.0465 | 6.0 | 2070 | 1.7785 | 0.6754 | 0.5346 | 0.8011 | 0.6678 |
63
+ | 0.0078 | 7.0 | 2415 | 2.0612 | 0.6819 | 0.6252 | 0.7325 | 0.6789 |
64
+ | 0.0003 | 8.0 | 2760 | 2.2956 | 0.6971 | 0.5376 | 0.8395 | 0.6886 |
65
+ | 0.0001 | 9.0 | 3105 | 2.3499 | 0.6942 | 0.5192 | 0.8505 | 0.6848 |
66
+ | 0.0001 | 10.0 | 3450 | 2.3414 | 0.6942 | 0.5361 | 0.8354 | 0.6857 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.29.2
72
+ - Pytorch 2.0.1+cu118
73
+ - Datasets 2.12.0
74
+ - Tokenizers 0.13.3