update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: bsd-3-clause
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: ast_20-finetuned-ICBHI
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# ast_20-finetuned-ICBHI
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.3414
|
20 |
+
- Accuracy: 0.6942
|
21 |
+
- Sensitivity: 0.5361
|
22 |
+
- Specificity: 0.8354
|
23 |
+
- Score: 0.6857
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 3e-05
|
43 |
+
- train_batch_size: 4
|
44 |
+
- eval_batch_size: 4
|
45 |
+
- seed: 42
|
46 |
+
- gradient_accumulation_steps: 4
|
47 |
+
- total_train_batch_size: 16
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- lr_scheduler_warmup_ratio: 0.1
|
51 |
+
- num_epochs: 10
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Sensitivity | Specificity | Score |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:-----------:|:------:|
|
57 |
+
| 0.895 | 1.0 | 345 | 0.9921 | 0.6029 | 0.2458 | 0.9218 | 0.5838 |
|
58 |
+
| 0.8244 | 2.0 | 690 | 0.8522 | 0.6717 | 0.4147 | 0.9012 | 0.6580 |
|
59 |
+
| 0.7002 | 3.0 | 1035 | 0.8378 | 0.6775 | 0.5346 | 0.8052 | 0.6699 |
|
60 |
+
| 0.415 | 4.0 | 1380 | 1.0645 | 0.6674 | 0.5392 | 0.7819 | 0.6605 |
|
61 |
+
| 0.19 | 5.0 | 1725 | 1.3827 | 0.6732 | 0.5207 | 0.8093 | 0.6650 |
|
62 |
+
| 0.0465 | 6.0 | 2070 | 1.7785 | 0.6754 | 0.5346 | 0.8011 | 0.6678 |
|
63 |
+
| 0.0078 | 7.0 | 2415 | 2.0612 | 0.6819 | 0.6252 | 0.7325 | 0.6789 |
|
64 |
+
| 0.0003 | 8.0 | 2760 | 2.2956 | 0.6971 | 0.5376 | 0.8395 | 0.6886 |
|
65 |
+
| 0.0001 | 9.0 | 3105 | 2.3499 | 0.6942 | 0.5192 | 0.8505 | 0.6848 |
|
66 |
+
| 0.0001 | 10.0 | 3450 | 2.3414 | 0.6942 | 0.5361 | 0.8354 | 0.6857 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.29.2
|
72 |
+
- Pytorch 2.0.1+cu118
|
73 |
+
- Datasets 2.12.0
|
74 |
+
- Tokenizers 0.13.3
|