wa976 commited on
Commit
425e2cc
·
1 Parent(s): 9f9ec53

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bsd-3-clause
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: ast_21-finetuned-ICBHI
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # ast_21-finetuned-ICBHI
16
+
17
+ This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.5318
20
+ - Accuracy: 0.6797
21
+ - Sensitivity: 0.5322
22
+ - Specificity: 0.8118
23
+ - Score: 0.6720
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 3e-05
43
+ - train_batch_size: 4
44
+ - eval_batch_size: 4
45
+ - seed: 42
46
+ - gradient_accumulation_steps: 4
47
+ - total_train_batch_size: 16
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - lr_scheduler_warmup_ratio: 0.1
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Sensitivity | Specificity | Score |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:-----------:|:------:|
57
+ | 0.8802 | 1.0 | 345 | 0.9189 | 0.6355 | 0.3236 | 0.9148 | 0.6192 |
58
+ | 0.8729 | 2.0 | 690 | 0.8915 | 0.6283 | 0.5138 | 0.7308 | 0.6223 |
59
+ | 0.6646 | 3.0 | 1035 | 0.9005 | 0.6551 | 0.6043 | 0.7005 | 0.6524 |
60
+ | 0.3145 | 4.0 | 1380 | 1.1884 | 0.6572 | 0.4018 | 0.8860 | 0.6439 |
61
+ | 0.2176 | 5.0 | 1725 | 1.4167 | 0.6623 | 0.5828 | 0.7335 | 0.6582 |
62
+ | 0.1556 | 6.0 | 2070 | 1.9695 | 0.6732 | 0.5061 | 0.8228 | 0.6645 |
63
+ | 0.0144 | 7.0 | 2415 | 2.3115 | 0.6761 | 0.5506 | 0.7885 | 0.6695 |
64
+ | 0.0001 | 8.0 | 2760 | 2.4443 | 0.6746 | 0.5291 | 0.8049 | 0.6670 |
65
+ | 0.0001 | 9.0 | 3105 | 2.5163 | 0.6775 | 0.5291 | 0.8104 | 0.6698 |
66
+ | 0.0001 | 10.0 | 3450 | 2.5318 | 0.6797 | 0.5322 | 0.8118 | 0.6720 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.29.2
72
+ - Pytorch 2.0.1+cu118
73
+ - Datasets 2.12.0
74
+ - Tokenizers 0.13.3