--- license: bsd-3-clause tags: - generated_from_trainer metrics: - accuracy model-index: - name: ast_22-finetuned-ICBHI results: [] --- # ast_22-finetuned-ICBHI This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5036 - Accuracy: 0.6867 - Sensitivity: 0.5346 - Specificity: 0.8228 - Score: 0.6787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Sensitivity | Specificity | Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:-----------:|:------:| | 1.0662 | 1.0 | 345 | 0.9169 | 0.6389 | 0.3963 | 0.8558 | 0.6260 | | 0.7055 | 2.0 | 690 | 0.8638 | 0.6512 | 0.4516 | 0.8297 | 0.6406 | | 0.5748 | 3.0 | 1035 | 0.9060 | 0.6599 | 0.4409 | 0.8558 | 0.6483 | | 0.3318 | 4.0 | 1380 | 1.1034 | 0.6555 | 0.3641 | 0.9162 | 0.6401 | | 0.1411 | 5.0 | 1725 | 1.3586 | 0.6838 | 0.5346 | 0.8173 | 0.6759 | | 0.0854 | 6.0 | 2070 | 2.1432 | 0.6759 | 0.4608 | 0.8681 | 0.6645 | | 0.0186 | 7.0 | 2415 | 2.3421 | 0.6715 | 0.5545 | 0.7761 | 0.6653 | | 0.0417 | 8.0 | 2760 | 2.4426 | 0.6824 | 0.5361 | 0.8132 | 0.6746 | | 0.0001 | 9.0 | 3105 | 2.4895 | 0.6831 | 0.5346 | 0.8159 | 0.6752 | | 0.0 | 10.0 | 3450 | 2.5036 | 0.6867 | 0.5346 | 0.8228 | 0.6787 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3