--- license: bsd-3-clause tags: - generated_from_trainer metrics: - accuracy model-index: - name: ast_5-finetuned-ICBHI results: [] --- # ast_5-finetuned-ICBHI This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2026 - Accuracy: 0.6547 - Sensitivity: 0.4720 - Specificity: 0.8181 - Score: 0.6451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Sensitivity | Specificity | Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:-----------:|:------:| | 0.9246 | 1.0 | 258 | 0.9810 | 0.6076 | 0.5004 | 0.7035 | 0.6019 | | 0.8279 | 2.0 | 517 | 0.8591 | 0.6478 | 0.3691 | 0.8970 | 0.6331 | | 0.5969 | 3.0 | 776 | 0.9275 | 0.6446 | 0.5111 | 0.7639 | 0.6375 | | 0.185 | 4.0 | 1035 | 1.2026 | 0.6547 | 0.4720 | 0.8181 | 0.6451 | | 0.0305 | 4.99 | 1290 | 1.5138 | 0.6467 | 0.4873 | 0.7893 | 0.6383 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3