wa976 commited on
Commit
69160ee
1 Parent(s): 8752211

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bsd-3-clause
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: ast_9-finetuned-ICBHI
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # ast_9-finetuned-ICBHI
16
+
17
+ This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.8548
20
+ - Accuracy: 0.6572
21
+ - Sensitivity: 0.4183
22
+ - Specificity: 0.8710
23
+ - Score: 0.6446
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 3e-05
43
+ - train_batch_size: 4
44
+ - eval_batch_size: 4
45
+ - seed: 42
46
+ - gradient_accumulation_steps: 4
47
+ - total_train_batch_size: 16
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - lr_scheduler_warmup_ratio: 0.1
51
+ - num_epochs: 5
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Sensitivity | Specificity | Score |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:-----------:|:------:|
57
+ | 0.9335 | 1.0 | 258 | 0.9986 | 0.5986 | 0.5318 | 0.6582 | 0.5950 |
58
+ | 0.8392 | 2.0 | 517 | 0.8548 | 0.6572 | 0.4183 | 0.8710 | 0.6446 |
59
+ | 0.6187 | 3.0 | 776 | 0.8978 | 0.6554 | 0.4797 | 0.8126 | 0.6461 |
60
+ | 0.2052 | 4.0 | 1035 | 1.1767 | 0.6533 | 0.4536 | 0.8318 | 0.6427 |
61
+ | 0.1132 | 4.99 | 1290 | 1.4218 | 0.6525 | 0.5004 | 0.7886 | 0.6445 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.29.1
67
+ - Pytorch 2.0.0+cu118
68
+ - Datasets 2.12.0
69
+ - Tokenizers 0.13.3