--- license: bsd-3-clause tags: - generated_from_trainer metrics: - accuracy model-index: - name: ast_binary_6-finetuned-ICBHI results: [] --- # ast_binary_6-finetuned-ICBHI This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6811 - Accuracy: 0.6 - Sensitivity: 0.6593 - Specificity: 0.5558 - Score: 0.6075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Sensitivity | Specificity | Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:-----------:|:------:| | 0.6592 | 1.0 | 259 | 0.6811 | 0.6 | 0.6593 | 0.5558 | 0.6075 | | 0.5766 | 2.0 | 518 | 0.7937 | 0.5779 | 0.5939 | 0.5659 | 0.5799 | | 0.5117 | 3.0 | 777 | 1.0242 | 0.5267 | 0.8139 | 0.3124 | 0.5632 | | 0.5407 | 4.0 | 1036 | 0.9152 | 0.5445 | 0.8088 | 0.3473 | 0.5781 | | 0.4504 | 5.0 | 1295 | 0.9963 | 0.5401 | 0.7596 | 0.3764 | 0.5680 | | 0.4304 | 6.0 | 1554 | 0.9598 | 0.5579 | 0.6814 | 0.4658 | 0.5736 | | 0.4132 | 7.0 | 1813 | 0.9771 | 0.5506 | 0.6950 | 0.4430 | 0.5690 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3