MotionBERT / lib /model /model_action.py
walterzhu's picture
Upload 58 files
bbde80b
raw
history blame
2.84 kB
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
class ActionHeadClassification(nn.Module):
def __init__(self, dropout_ratio=0., dim_rep=512, num_classes=60, num_joints=17, hidden_dim=2048):
super(ActionHeadClassification, self).__init__()
self.dropout = nn.Dropout(p=dropout_ratio)
self.bn = nn.BatchNorm1d(hidden_dim, momentum=0.1)
self.relu = nn.ReLU(inplace=True)
self.fc1 = nn.Linear(dim_rep*num_joints, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, num_classes)
def forward(self, feat):
'''
Input: (N, M, T, J, C)
'''
N, M, T, J, C = feat.shape
feat = self.dropout(feat)
feat = feat.permute(0, 1, 3, 4, 2) # (N, M, T, J, C) -> (N, M, J, C, T)
feat = feat.mean(dim=-1)
feat = feat.reshape(N, M, -1) # (N, M, J*C)
feat = feat.mean(dim=1)
feat = self.fc1(feat)
feat = self.bn(feat)
feat = self.relu(feat)
feat = self.fc2(feat)
return feat
class ActionHeadEmbed(nn.Module):
def __init__(self, dropout_ratio=0., dim_rep=512, num_joints=17, hidden_dim=2048):
super(ActionHeadEmbed, self).__init__()
self.dropout = nn.Dropout(p=dropout_ratio)
self.fc1 = nn.Linear(dim_rep*num_joints, hidden_dim)
def forward(self, feat):
'''
Input: (N, M, T, J, C)
'''
N, M, T, J, C = feat.shape
feat = self.dropout(feat)
feat = feat.permute(0, 1, 3, 4, 2) # (N, M, T, J, C) -> (N, M, J, C, T)
feat = feat.mean(dim=-1)
feat = feat.reshape(N, M, -1) # (N, M, J*C)
feat = feat.mean(dim=1)
feat = self.fc1(feat)
feat = F.normalize(feat, dim=-1)
return feat
class ActionNet(nn.Module):
def __init__(self, backbone, dim_rep=512, num_classes=60, dropout_ratio=0., version='class', hidden_dim=2048, num_joints=17):
super(ActionNet, self).__init__()
self.backbone = backbone
self.feat_J = num_joints
if version=='class':
self.head = ActionHeadClassification(dropout_ratio=dropout_ratio, dim_rep=dim_rep, num_classes=num_classes, num_joints=num_joints)
elif version=='embed':
self.head = ActionHeadEmbed(dropout_ratio=dropout_ratio, dim_rep=dim_rep, hidden_dim=hidden_dim, num_joints=num_joints)
else:
raise Exception('Version Error.')
def forward(self, x):
'''
Input: (N, M x T x 17 x 3)
'''
N, M, T, J, C = x.shape
x = x.reshape(N*M, T, J, C)
feat = self.backbone.get_representation(x)
feat = feat.reshape([N, M, T, self.feat_J, -1]) # (N, M, T, J, C)
out = self.head(feat)
return out